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Article

Breaking Barriers with Al: The
Evolution and Challenges of Automated
Sign Language Recognition

Mamta Joshi !, Pranjul Khankriyal !, Yashvi Chandola* !, and Vivek Uniyal !

'Department of Computer Science & Engineering, Institute of Technology Gopeshwar,
Uttarakhand

DOI: |10.47344/929bgn04
Abstract

Communication remains a significant challenge for individuals with hearing impairments and speech-
related disabilities, especially when others are not familiar with sign language. Developing technologies that
facilitate seamless communication for these individuals is crucial to promote equality for disabled people
and accessibility for all. Sign language recognition systems have emerged as a promising solution, typically
implemented using a hardware or software-based approach. Hardware solutions, such as sensor-equipped
gloves, often pose usability and cost barriers, making them less appealing for widespread adoption. In
contrast, software-driven approaches using artificial intelligence (Al), deep learning (DL) and machine
learning (ML) offer a more practical and scalable alternative. This paper provides a complete review of
recent developments in Al-based sign language recognition systems, with a particular attention towards
deep learning architectures such as Convolution Neural Networks (CNNs). The aim is to evaluate current
methodologies, highlight their strengths and limitations, and identify potential directions for future research
to improve communication technologies for hearing-impaired people.

Keywords: Sign Language Recognition, Machine Learning, Deep Learning, Assistive Technology, Communication Accessibility.

I. INTRODUCTION

“As per National Institute on Deafness and Other Communication Disorder (NIH) approx. 7.7% of United States children of the
age ranging between 3-17 has had disorder of voice, speech, language or swallowing in past year. Among these children around
67.7% have speech problem Hoffman HJ et al. (2015) [16].” An automated system to bridge the communication gap between
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hearing-impaired individuals and others holds great promise in the context of Al advancements. Joze et al. (2018) [27]]. Some of
the research work showed the important aspect of training the model with Spatiotemporal Convolution to process continuous frames
in case of video analysis and sign language translation. Their proposed architecture includes R(2+1)D in which they are able to
achieve admirable results comparatively to Sports1M, Kinetics, UCF101, and HMDBS51 with accuracy of 73.3% which is by far best
published result in SportsIM Tran et al, (2018) [[1]. Mostly sign language detection is categorised into hardware-based approach
and software-based approach. Also keeping in note, the fact that wearing the armband all the time to sign could be uncomfortable
and having less amount of data for model training. So far, the authors have seen that majority of research work concludes towards
improving the software models and the concern about the lack of dataset availability, which is essential in the accuracy of the trained
model.

A. Variations in Sign Languages

As it is encountered till now there are around 138 to 300 distinct sign languages, which is the first language for beyond 72 million
hearing impaired people all over world, as signs and gestures varies according to religions and countries Hoffman HJ et al. (2015)
[16]. Most of the sign languages are very different from others, which makes model Training and testing Language dependent.
Also, datasets for each language are different, and due to the differences between these languages there are limited resources to
train the models for sign Language Translation, which always turns out to be a major concern because larger the dataset, the more
accurate the trained model will be Joze et al. (2018) [27]], Albanie et al. (2020) [28]. The Figurem shows the different sign language
datasets. Some Sign Languages which are commonly used are ASL(American Sign Language used by around 2,50,000-5,00,000

GSL

Greek sign language
dataset. Contains
10,295 video instances
recorded in 2021

ISL

Indian sign language
dataset. Contains
18,863 video instances
recorded in 2019

MS-ASL

American sign language
dataset. Contains

QI0

German sign language
recognition dataset
Contains 6841 video
instances recorded in
2014,

Chinese sign language
dataset. Contains
25,000 video instances
recorded in 2016,

BSL-1K

British sign language
dataset. Contains

25,513 video instances
recorded in 2019,

273,000 video instances
recorded in 2020.

Fig. 1: Different Sign Language Datasets

people), BSL(British Sign Language used by 1,50,000 people), ISL(Indian Sign Language used by around 1 million to 2.7 million
), CSL (Chinese Sign Language used by around 4.2 million peoples as per in 2021), DGS(German Sign Language used by 250,000
people) etc Li, Y., Zhang et al. (2022) [29]]. According to Ethnologue and other sources (Joshi et al. [17], 2024; Sridhar et al., 2020
[26]), an estimated 1.5 million sign language users in India were reported to use Indo-Pakistani Sign Language (IPSL) as of 2008,
making it one of the major sign languages in the region, shared with Pakistan and characterized by its own linguistic structure,
though regional variations may exist; more recent studies suggest the number of users may have increased due to greater awareness
and inclusion efforts, though precise updated figures remain limited, highlighting the need for further research and policy support
to recognize and promote IPSL in education and accessibility initiatives

The Tablemshows the different datasets available to facilitate the operation of training sign language translation models. Phoenix-
2014 is a widely used benchmark for continuous sign language recognition. It includes weather forecast videos paired with German
Sign Language (DGS) gloss annotations. It is often used to evaluate sequential modelling and translation pipelines. The Chinese
Sign Language dataset contains continuous sequences with varied vocabulary and sentence structures. It supports research on region-
specific sign recognition and gesture dynamics Li, Y., Zhang et al. (2022) [29]. One of the largest publicly available datasets for
CSLR based on British Sign Language (BSL-1K). It includes a broad vocabulary, more than 1000 BSL Signs and many signers,
making it suitable for developing signer-independent models Albanie et al. (2020) [28]]. The MS-ASL dataset covers isolated sign
recognition across 1,000 classes and more than 25,000 annotated videos of American Sign Language. It includes different signer
in real-life recording condition enabling Machine Learning Models to understand ASL more Joze et al. (2018) [27]. The ISL is a
dataset on Indian Sign Language created and used for the motive of training the machine learning model and research motives on

Received: June 11, 2025. Reviewed: November 23, 2025. Accepted: December 9, 2025.
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TABLE I: Description of Sign Language Translation Datasets

Datasets Language | Video Instances | Year | Type
Phoenix-2014 [2], [6] German 6,841 2014 | CSLR
CSL [2] Chinese 25,000 2016 | CSLR
BSL-1K [2], [6] British 273,000 2020 | CSLR
MS-ASL [4]-[6], [9] American 25,513 2019 | ISLR
ISL [10], [(12], [13], [15] | Indian 18,863 2019 | CSLR
GSL [4] Greek 10,295 2021 | CSLR

Note: CSLR: Continuous Sign Language Recognition, CSL: Chinese Sign Language dataset, BSL-1K: British Sign Language
Dataset, MS-ASL.: large-scale dataset in American Sign Language, ISL: Indian Sign Language Datasets, GSL: Greek Sign
Language Datasets, ISLR: Isolated Sign Language Recognition.

Sign Language Translation Joshi et al. (2024) [17]. GSL is a large-scale dataset generated in Greek Sign Language which supports
CSLR tasks. It is used for sign language recognition and translation Papadimitriou et al. (2024) [30]]. In the Figure |Z| the authors
had categorised some of the widely used Sign Languages to show the differences between their very foundation. It can be observed
in Figure @ that ASL uses single hand to sign whereas in Figure @ ISL and Figure BSL uses both hands to sign. Also,
almost every sign for alphabets in each language is different from others Albanie et al. (2020) [28].

B. Sign Language Translation

Sign Language Recognition for Models and Translation involves multiple stages to accurately identify sign gestures from the
frame and translate these gestures into text or audio. Each step is very important on its own and plays an important role in maintaining
the efficiency and accuracy of the translation system. Figure |Z| shows the AI-Based sign language recognition system Cycle.

1) Data Collection and Preprocessing: In this process the raw video or image data of sign gestures is collected,
they may vary in lighting or background noises to help in training the model in every possible criterion. Preprocessing involves
operations like noise removal, background subtraction and gestures segmentation to prepare consistent inputs for the model and
remove unnecessary overhead for the model Sridhar et al. (2020) [26]. The Figure E| shows Steps for Preprocessing of collected
data.

2) Feature Extraction and Selection: Appropriate features and gestures from the frame- including hand position, shape,
orientation, facial expressions, and motion trajectories-are extracted. Classical methods like Histogram of oriented Gradients (HOG)
and optical flow, while deep learning models extract features automatically using CNNs or 3D-CNNs Alzubaidi et al. (2021) [31],
Al-Selwi et al. (2024) [32], Chen et al. (2021) [33].

3) Classification (Training and Testing): Extracted features are fed into classifiers (e.g., Random Forest, Neural
networks or SVM) or end-to-end deep learning models. These systems are trained on labelled datasets and then tested to evaluate
performance across various sign classes.

4) Sign-to-Text/Audio Translation: Recognized signs are mapped to their corresponding textual meaning. Using Natural
Language Processing (NLP), grammatically correct sentences are generated and optionally converted to audio using text-to-speech
(TTS) systems for real-time interaction Nadkarni et al. (2011) [20], Kumar et al. (2023) [21].

5) User Interface and Real-Time Application: A user-friendly interface enables deaf or hard-of-hearing individuals
to interact with the system. Integration with cameras or mobile devices facilitates real-time translation in practical settings like
classrooms, public services, or workplaces.

C. Challenges in Al- Based Sign Language Recognition

Many sign languages lack large, annotated datasets, especially for low-resource or regional languages. This scarcity limits the
training capability of deep models and reduces generalizability Papadimitriou et al. (2024) [30]. Differences in hand size, speed,
signing style, and facial expressions among users can reduce recognition accuracy. Models must be adaptable to signer-independent
inputs. Unlike spoken languages, signs rely heavily on spatial grammar, body posture, and facial cues. Capturing and interpreting
these nuances accurately requires multimodal fusion and temporal modelling Saunders et al. (2022) [24]. Deploying systems in
real-world applications demands low latency and high frame-rate processing, which can be computationally intensive, especially on

Received: June 11, 2025. Reviewed: November 23, 2025. Accepted: December 9, 2025.  © 2025 Mamta Joshi, Pranjul
Khankriyal, Yashvi Chandola, Vivek Uniyal . All rights reserved.
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Fig. 2: Comparison of sign language alphabets

edge devices or mobile platforms. Apart from these background clutters and uneven lighting can highly affect the efficiency of the
model Kadam et al. (2020) [23]]. The Figure ] illustrates the Challenges in Al-Based Sign Language Recognition

II. LITERATURE REVIEW

Traditional methods for Sign language recognition (SLR) included sensor gloves which are hardware dependent, they are effective
but has higher cost and may suffer the user from discomfort. Whereas with advancements in artificial intelligence (AI) and deep
learning (DL), Sign Language Recognition has also evolved. Moreover, the focus of study has also shifted towards software-
based approaches that utilize the concept of computer vision, neural networks and machine learning to interpret sign language. A
major milestone in this domain is the introduction of spatiotemporal convolutional models, which drastically enhanced video-based
action recognition. Tran et al. (2018) proposed the R(2+1)D convolutional architecture in their paper, which is a model that
separates spatial and temporal dimensions, demonstrating improved performance across several benchmark datasets like Sports1M
and UCF101. This concept proves to be efficient for modelling dynamic hand gestures in continuous sign language recognition.
Many thorough surveys have highlighted the fact of vast diversity among sign languages and the impact it has on dataset and sign
language recognition system development. For instance, Madhiarasan and Roy (2022) [2] categorized sign languages by modality
and regional variation, not taking accounts of the challenges for building a generalized models that can handle distinct grammar
and gestures across ASL, BSL, ISL, and others. This leads to the requirement of the use of large, Sign language-specific datasets
such as Phoenix-2014 for German Sign Language and MS-ASL for American Sign Language Joze et al. (2018) [27], Albanie

Received: June 11, 2025. Reviewed: November 23, 2025. Accepted: December 9, 2025.
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Data Collection User Interface
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Selection Translation
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features for text or audio
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Fig. 3: Al-Based sign language recognition system Cycle
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Fig. 4: Steps for Preprocessing of collected data

et al. (2020) , Li, Y., Zhang et al. (2022) . To tackle the problem of processing complex multi-video input and user
variability, Dignan et al. (2022) developed a group-based recognition model that integrates multiple video streams to enhance
classification accuracy. Their approach demonstrates that playing on diverse data perspectives can significantly affect the robustness
of the system. Transformer-based models of Vaswani et al. (2017) [5]] "Attention is All You Need,” have also started to impact SLR
architectures. The self-attention mechanism enables models to weigh temporal and spatial features more effectively and efficiently,
which has proven useful in continuous sign translation Joze et al. (2018) [27]. Apart from architecture, Adeyanju et al. (2021)
[6] critically evaluated machine learning approaches for SLR, identifying limitations in sign language recognition model such
as overfitting, lack of performance in real-time, and difficulty in handling background clutter. They supported the use of hybrid
models that integrates classical ML techniques with deep networks to reduce these concerns. A significant concern in the field is
the scarcity of annotated datasets, especially for non-dominant languages. Subburaj and Murugavalli (2022) [12] noted that most
public datasets are constrained in terms of signer variability, background complexity, and linguistic coverage. This data limitation
hinders the development of truly scalable SLR systems Sridhar et al. (2020) [26]. Furthermore, several studies have underscored
the importance of real-time processing and user adaptability. Najib (2025) explored Al-driven models capable of real-time sign
translation, incorporating speech synthesis and natural language processing (NLP) to fill the difference between gesture and spoken
communication.

Received: June 11, 2025. Reviewed: November 23, 2025. Accepted: December 9, 2025.  © 2025 Mamta Joshi, Pranjul
Khankriyal, Yashvi Chandola, Vivek Uniyal . All rights reserved.
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Fig. 5: Challenges in Al-Based Sign Language Recognition

The comparative Table@ of SLR studies reveals several important patterns and trends that highlight the evolution of modelling
strategies in the field. These results provide insights into researcher’s decisions about input data, model settings, and application
areas. Learning Rate controls how much the learning model will update its weight after each step. Batch size is defined as the number
of samples processed before amending the model. Epoch means the model has seen all the training data once. Optimizer is termed
as the algorithm that adjusts the weight. Dropout is a regularization technique to prevent overfitting as it randomly deactivates
neurons during training. Learning rate schedule is a strategy in which the authors slowly increase at the beginning, it helps in
stabilizing training in early stage of model training. the authors also observed that the demand for video-based input is growing,
especially for the sign language recognition system models which are working on Continuous Sign Language Recognition (CSLR)
Aloysius et al. (2020) [[18]]. Video-based methods have more hand movements, facial expression and temporal gestures in comparison
to image-based methods. Work by Tran et al. (2018) [1]] and Dignan et al. (2022) [3] provides that foundation for incorporating
temporal features have greatly improved performance for dynamic signing Saunders et al. (2022) [24]. Most recent research has
worked on deep learning models, particularly CNNs, RNNs, or CNN-LSTM combination models Al-Selwi et al. (2024) [32]. Typical
hyperparameters are the batch sizes of 16-64, learning rates of approximately 0.001, and optimizers. These values were noticed to
balance convergence speed with model stability, especially when the model is trained on medium-to-large datasets. Recent studies
such as by Najib (2025) [10] and Papastratis et al. (2021) [4]] indicate a growth in interest for the real time deployment of model for
better usability and effectiveness. Lightweight models and inference speed are being top priority to consider, especially for mobile
applications or assistive systems for deaf people and those who are hard-of-hearing.

A. Classical Machine Learning Techniques

The initial work in SLR were mostly based on hand-designed feature extraction and then machine learning classifiers. These
methods needed manual design of features like hand orientation, trajectory, and position Adeyanju et al. (2021) [6]], Oyeniran et al.
(2020) 8]

o Support Vector Machines (SVMs) popularly used for gesture classification, SVMs showed high performance on limited datasets.

They were particularly effective for isolated sign recognition tasks.

e Hidden Markov Models (HMMs) HMMs played a crucial role in modelling the temporal properties of gestures. They were

able to capture sign transitions through time and were appropriate for sequential data such as CSLR.

e K-Nearest Neighbours (KNN) and Decision Trees were also used but often lacked scalability and robustness in complex,

real-world settings.
While these models were computationally efficient, their dependence on manual features limited their generalizability across datasets
and signers.

The Figure |§| shows Classical Machine Learning Techniques popularly used for sign language recognition.

The comparative Tab]elml provides a summary about the studies that used classical machine learning methods in Sign Language
Recognition system. It also stated the input type, task type, algorithms used for model and accuracy for these models. An accuracy
of approximately 92 % has been achieved as highest among them.

B. Deep Learning-Based Approaches

With the rise of large datasets and computational power, deep learning transformed SLR by enabling automatic feature learning
from raw image or video data Al-Qurishi et al. (2021) [22], Al-Selwi et al. (2024) [32]. The Figure m shows Deep Learning

Received: June 11, 2025. Reviewed: November 23, 2025. Accepted: December 9, 2025.  © 2025 Mamta Joshi, Pranjul
Khankriyal, Yashvi Chandola, Vivek Uniyal . All rights reserved.
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TABLE II: Studies carried out based on hyper parameters and input type for Sign Language Translation

Investigators (Year) | Input Type | Task Type | Key Hyperparameters Description
Tran et al. (2014) [1] | Video CSLR Model’s Learning Rate: | R(2+1)D CNN, tested
0.01, number of Epochs: | on Sports1M, UCF101
200, Batch Size: 16,
Optimizer: SGD, Dropout:
0.5
Dignan et al. (2022) | Multi-Video | CSLR Batch Size: 32, Epochs: | Fusion of multiple
131 150, Optimizer: Adam streams improves
performance
Papastratis et al. | Video CSLR Learning Rate of model: | LSTM + CNN hybrid
(2021) [4] 0.001, number of Epochs: | for gesture sequence
100, Optimizer: Adam learning
Vaswani et al. (2017) | Text (MLP | — Learning Rate Schedule: | Introduces Transformer,
151 base) Warm-up, Dropout: S0.1 foundational in
attention-based SLR
models
Amrutha & Prabu | Image ISLR Epochs: 100, Optimizer: | Simple CNN on Indian
(2021) |71 Adam, Batch Size: 64 sign dataset
Bhaumik et al. (2023) | Video CSLR Learning Rate: 0.0001, | Deep CNNs + NLP
191 Batch Size: 32 module for sentence
translation
Najib (2025) [[10] Video CSLR Batch Size: 16, Optimizer: | End-to-end translation,
AdamW, Epochs: 120 Transformer backbone
Sultan et al. (2022) | Image ISLR Dropout: 0.3, Batch Size: | Comparative study with
[11] 64, Epochs: 80 CNN, MLP
| Hussain et al. (2023) | Video CSLR Batch Size: 32, Model’s | ISL-focused CNN-RNN
115] Learning Rate: 0.001 architecture

Note: ISLR: Isolated Sign Language Recognition, LSTM: Long Short-Term Memory, CSLR: Continuous Sign Language
Recognition, MLP: Multilayer Perceptron, RNN: Recurrent Neural Networks, SPORTS1M: Larger Dataset of YouTube videos,
UCF101: Action Recognition Dataset, CNN: Convolution Neural Networks, BLEU: Bilingual Evaluation Understudy (for sign-
to-text translation).

Techniques popularly used for sign language recognition.

1) Convolutional Neural Networks (CNNs): CNNs became foundational for image-based gesture recognition. By
extracting hierarchical spatial features, CNNs significantly improved recognition accuracy Subburaj and Murugavalli (2022) [12],
Amrutha and Prabu (2021) [[7], Al-Qurishi et al. (2021) [22], Alzubaidi et al. (2021) [31]], Al-Selwi et al. (2024) [32].

o Used effectively for static hand signs (e.g., alphabet recognition in ASL).

o Capable of learning complex spatial patterns like finger positions and hand shapes.

o Limitations include poor temporal understanding when used alone on video sequences.

2) Recurrent Neural Networks (RNNs) and LSTMs: To model temporal features in sign sequences, RNNs and their
other variations like Long Short-Term Memory (LSTM) networks were introduced Papastratis et al. (2021) [4], Al-Selwi et al.
(2024) [32].

o Effective for learning sequential relationships in continuous video.

e Can be integrated with CNNs (CNN-LSTM models) to learn spatial-temporal features.

o Suffer from limitations like vanishing gradients and high training time for long sequences.

3) 3D CNNs and Spatiotemporal Models: 3D CNNs can operates on spatial and temporal features concurrently Tran
et al. (2018) [1]], Alzubaidi et al. (2021) [31]], Chen et al. (2021) [33]. Notable models include:

e C3D, I3D, and R(2+1)D: These extract features from frame sequences and learn motion dynamics.

Received: June 11, 2025. Reviewed: November 23, 2025. Accepted: December 9, 2025.  © 2025 Mamta Joshi, Pranjul
Khankriyal, Yashvi Chandola, Vivek Uniyal . All rights reserved.
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TABLE III: Studies using Classical Machine Learning Approaches in Sign Language Recognition
Investigators Input Type | Task Type Algorithm Used Accuracy
Adeyanju et al. | Image/Video | ISLR and | SVM, KNN, Deci- | 80-92%
(2021) CSLR sion Tree
Amrutha and Prabu | Image ISLR SVM ~91%
(2021) 7]

Ozguizua et al. | Image/Video | ISLR Naive Bayes, Deci- | 78-88%

(2020) sion Tree, KNN

Nair and Bindu | Image ISLR Template ~80%

(2013) Matching, HMM

Sultan et al. (2022) | Image ISLR MLP, Decision | 85-89%
Tree, KNN

Hussain et al. | Image/Video | ISLR SVM, Random | ~90%

(2023) Forest

Note: Input type: static image frames or video sequences; Task type: ISLR (Isolated Sign Language Recognition) or CSLR
(Continuous Sign Language Recognition).

o Particularly useful for CSLR, where the motion trajectory is vital.
o These models achieve higher accuracy but are computationally intensive.

The Table m summarizes the studies that has improvised deep learning methods in Sign Language Recognition, it has also
provided details about the input type, task type, model used and accuracy for these models. The maximum of 90 % accuracy has
been reported approximately for the studies Al-Qurishi et al. (2021) [22].

4) Multimodal and Hybrid Models: Advanced systems often integrate multiple input types to improve robustness
Dignan et al. (2022) [3]. Multimodal SLR combines vision (camera input), depth data (e.g., Kinect), and hand pose sensors. Hybrid
Architectures use CNNs for feature extraction from image and LSTMs/Transformers for modelling of sequence. Some models
integrate Natural Language Processing (NLP) for grammar-aware output and Text-to-Speech (TTS) systems for audio feedback.
These approaches aim to replicate the richness of human communication by combining visual cues with linguistic and contextual
processing.

The comparison Table M highlights the studies which uses multimodal or hybrid models in Sign Language Recognition, about
their input type, task type, models used and their reported accuracy, an accuracy of 90 % approximately has been noted as highest
for these models Sarhan et al. (2023) [19]], Aloysius et al. (2020) [18].

5) Real-Time and Lightweight Models: Deploying SLR systems in real-world settings like mobile devices or AR
glasses demands efficient models Najib (2025) [10]], Papastratis et al. (2021) [4].

e Use of MobileNet, Tiny-YOLO, and quantized neural networks reduces computational cost Wang, W et al. (2020) [23]].

o Techniques like frame skipping, model pruning, and knowledge distillation allow real-time inference without significant

accuracy loss.
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TABLE IV: Studies Using Deep Learning Techniques in Sign Language Recognition

Investigators Input Task Type | Model Used Accuracy
Type
Tran et al. (2018) | Video CSLR R(2+1)D CNN 73.3%
[ (Sports1M)
%Dignan et al. (2022) | Multi- CSLR Multi-stream CNN + | ~85%
131 Video Ensemble
kPapastratis et al. | Video CSLR CNN + LSTM Hybrid | ~90%
(2021) [4]
Vaswani et  al. | Text (NLP) | — Transformer Foundational
(2017) [5] work
Bhaumik et al. | Video CSLR Deep CNN + NLP ~88%
(2023) [9]
Najib (2025) [10] Video CSLR Transformer-based + | ~89%
TTS
Ibrahim et  al. | Video CSLR Conceptual DL archi- | N/R
(2020) [14] tectures
Subburaj and Muru- | Video/Image CSLR/ISLR| CNNs, RNNs (sur- | N/A
gavalli (2022) [12] vey)

Note: Input type: video, multi-video streams or NLP inputs; Task type: ISLR (Isolated Sign Language Recognition) or CSLR
(Continuous Sign Language Recognition); N/R: Not Reported; N/A: Not Applicable; TTS: Text-to-Speech.

Real-time models prioritize speed and energy efficiency, often at the expense of some precision, but are vital for practical adoption.

The Table Mprovides the summary of studies which have used real-time and lightweight models in Sign Language Recognition
illuminating the reported accuracy of the models used and their input type along with task types. A highest of 90% accuracy has
reached approximately in the studies Sarhan et al. (2023) [19], Aloysius et al. (2020) [[18].

The Tableprovides performance analysis of different Studies carried out in Sign Language Translation. The majority of high-
performing models utilize video sequences as input, particularly for Continuous Sign Language Recognition (CSLR) Aloysius et al.
(2020) [18]], Sarhan et al. (2023) [19]. This trend reflects the importance of capturing motion dynamics and sequential dependencies
in real-time signing, as seen in studies like those by Tran et al. (2018) [1]] and Dignan et al. (2022) [3]]. Static image inputs, used
mainly in older or isolated sign models, tend to offer less contextual accuracy. Most studies prioritize accuracy as the primary metric,
often accompanied by F1-score, precision, or recall. This dual focus ensures both correct classification and balance across varied
sign classes. Some advanced systems, like Najib (2025) [10], also include BLEU scores for language-level evaluation, reflecting
the evolution toward full sign-to-text translation pipelines. While only a few models (e.g., Najib (2025) [10]], Hussain et al. (2023)
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TABLE V: Studies Using Multimodal or Hybrid Models in SLR
Investigators Input Type Task Type Model + Algorithm Accuracy
Dignan et al. | Multi-Video CSLR Multi-view CNN Ensem- | ~85%
(2022) [3] Streams ble
Papastratis et al. | Video + Sequen- | CSLR CNN + LSTM Hybrid ~90%
(2021) [4] tial
Bhaumik et al. | Video + NLP CSLR Deep CNN + Sentence | ~88%
(2023) [9] NLP
Najib (2025) [10] | Video + TTS CSLR Transformer + TTS ~89%
Subburaj and | Video/Image + | CSLR/ISLR | Vision + Temporal Fusion | N/A
Murugavalli Motion
(2022) [12]

Note: ISLR: Isolated Sign Language Recognition, CSLR: Continuous Sign Language Recognition, CNN: Convolutional Neural
Networks, LSTM: Long Short-Term Memory, TTS: Text-to-Speech, N/A: Not Applicable.

TABLE VI: Studies Using Real-time and Lightweight Models in SLR

Investigators Input Type Task Type Model Used Accuracy
Dignan et al. | Multi-Video CSLR Multi-stream CNN (op- | ~85%
(2022) 3] timized)

Papastratis et al. | Video CSLR CNN + LSTM (low- | ~90%
(2021) [4] latency)

Najib (2025) [[10] | Video + TTS CSLR Transformer (real-time) | ~89%
Hussain et  al. | Image/Video ISLR SVM + Fast Features ~90%
(2023) [[15]

Note: ISLR: Isolated Sign Language Recognition, CSLR: Continuous Sign Language Recognition, TTS: Text-to-Speech.

[15]]) are explicitly designed for real-time processing, this capability is gaining importance. Real-time readiness is still constrained
by computationally intensive demands, particularly with models using Transformers or 3D CNNs. Nevertheless, more recent studies
increasingly focus on speed optimization in order to facilitate mobile and wearable deployment Wang, W et al. (2020) [23|, Chen
et al. (2021) [33].

III. CHALLENGES AND LIMITATIONS

Even though there are rapid advancement in deep learning and multimodal modelling systems, Al-based Sign Language Recogni-
tion system still faces significant challenges. These challenges include both the linguistic complexity (how complicated a particular
sign language is?) and technical constraints of certain systems. The Figure |§| shows the major challenges and limitations in sign
language recognition.

A. Dataset Scarcity and Lack of Standardization

One challenge that has been persistent in SLR research is the shortage of availability of large, different, and annotated datasets.
Many datasets that are widely used such as MS-ASL, RWTH-PHOENIX, and BSL-1K are language-specific and often lack required
signer diversity to train the learning model, real-world variability, or consistent annotation protocols for the accuracy and efficiency
of model Madhiarasan and Roy (2022) [2], Subburaj and Murugavalli (2022) [12]. The lack of standardization in datasets makes it
difficult to create a specific term for models to follow to generalize performance across languages Joze et al. (2018) [27]], Albanie
et al. (2020) [28], Li, Y., Zhang et al. (2022) [29], Papadimitriou et al. (2024) [30].

B. Co-Articulation and Temporal Segmentation

In continuous sign language recognition (CSLR), signs are not neatly segmented a s they are interconnected and gestures flow
into one another, this is termed as a phenomenon known as co-articulation. Detecting the boundaries between individual signs
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TABLE VII: Performance of Studies for Sign Language Translation

Authors (Year) Dataset Used Metrics Real-Time Signer De-
Reported pendency
Tran et al. (2018) | Sports1M, Top-1:73.3%, No Dependent
(I} UCF101 Top-5
kDignan et al. | Custom (multi- | Acc:~85%, Partial Mixed
(2022) 3] video) Prec/Rec
Papastratis et al. | RWTH- Acc, Fl-score Yes (Proto) | Independent
(2021) [4] PHOENIX
Vaswani et al. | N/A BLEU, Accuracy | Yes N/A
(2017) 501
Amrutha & Prabu | Custom ISL Acc:~91% No Dependent
(2021) 7))
Bhaumik et al. | MS-ASL Acc:~88%, TTS | Yes Independent
(2023) 9]l
Najib (2025) [10] | Custom Trans- | Acc, BLEU, La- | Yes (Edge) Independent
former tency
Sultan et al. (2022) | ISL, MS-ASL | Acc, Fl-score No Dependent
[11]
| Nair & Bindu | ISL Acc:~80% No Dependent
(2013) [13]
Hussain et al. | ISL Acc:~90%, Yes Mixed
(2023) [15] Speed

Note: CSLR: Continuous SL Recognition, ISLR: Isolated SL Recognition, BLEU: Bilingual Evaluation Understudy, MS-ASL:
American SL Dataset, ISL: Indian SL, RWTH-PHOENIX: German SL Dataset.

without creating segments in manually is a very difficult task Ibrahim et al., (2020) [14]. This issue gets even more complicated by
variations in speed of signing between different individuals, expression, and regional styles Sarhan et al. (2023) [[19], Saunders et
al. (2022) [24].

C. Generalization to Unseen Signers and Environments

One if the major constraints for the Models is that they are trained on a limited set of signers and they often fail to generalize in
recognizing and differentiating the unseen users due to differences in hand shapes, motion patterns, body proportions, and signing
styles Papastratis et al., (2021) [4]]. Additionally, models trained in controlled settings like good lighting, no background clutter etc.
perform less efficiently in unrestricted environments with changing backgrounds, lighting, and occlusions Najib (2025) [10].

D. Real-Time Processing and Computational Constraints

Deploying SLR systems in real-world applications such as assistive tools or mobile devices needs models which are lightweight
and that can process gestures in real time with minimal or no time difference. However, high-performing models made of architectures
like 3D CNNs and Transformers often demands for considerable computational resources, which is commonly not available and
makes them unsuitable for edge deployment without significant optimization for real-world use Dignan et al. (2022) [3]], Chen et
al. (2021) [33]I.

E. Ethical, Cultural, and Accessibility Considerations

SLR systems must be compatible to the cultural diversity in sign languages as gestures, grammars, syntax, signs all can vary
widely across regions. For example, the authors take Indian sign Language is Completely contrasting in sign gestures, and grammar
from American sign language, so a model specifically trained on American Sign Language (ASL), is not transferable to Indian Sign
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Language (ISL) or British Sign Language (BSL). Moreover, most of the datasets does not consider the representation from disabled,
elderly, or non-native signers which can further lead to inefficiency when they try to use it, all these raise concerns about fairness
and accessibility Hussain et al. (2023) [I3]|. There are also privacy and ethical issues about the collection of video data, footage or
real- time video capture for training, what if the data is collected without consent Adeyanju et al. (2021) [6]. The FigureEl shows
the Ethical, Cultural, and Accessibility Considerations in sign language recognition.
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Fig. 9: Ethical and Cultural Considerations in SLR Systems

IV. FUTURE DIRECTIONS AND RESEARCH OPPORTUNITIES

As sign language recognition systems are continuously evolving, there are many promising directions for future research and
scopes. The main motive of these scopes is to overcome existing limitations, to enhance model generalizability, accessibility and real
time implementation without constraints. The Figure shows the Future Directions and Research Opportunities in sign language
recognition.
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A. Expansion of Multilingual and Inclusive Datasets

An important step toward creating better SLR systems is the creation of larger, multilingual, and demographically diverse
datasets for model training. Future datasets should include signers of various ages, abilities, and physical conditions to guarantee
fair, accessible and inclusive models. Additionally, some languages that majorly lacks annotated datasets such as African, Southeast
Asian, and indigenous sign languages should be considered to annotate as they are largely unexplored Madhiarasan and Roy (2022)
[2], Subburaj and Murugavalli (2022) [12], Hussain et al. (2023) [13], Joze et al. (2018) [27]}, Albanie et al.(2020) [28], Li, Y.,
Zhang et al. (2022) [29], Papadimitriou et al.(2024) [30].

B. Few-Shot and Zero-Shot Learning Approaches

To remove the dependency of models on large annotated datasets, future models can try adopting the few-shot and zero-shot
learning paradigms. These approaches work on the simple strategy i.e. to recognize new gestures or signs with minimal possible or
no training data. Combining this with techniques like meta-learning and contrastive learning can help our models to generalize to
unseen sign classes with better efficiency as per the current level Adeyanju et al. (2021) [6], Najib (2025) Kadam et al. (2020)

23],

C. Integration with Natural Language Processing (NLP)

As our current SLR systems can translate signs to individual words or phrases, future research can also focus on context-aware
sentence generation using advanced NLP models. Embedding syntactic and grammatical analysis can allow systems to produce
natural, grammatically correct output, which will enhance their practical use in real-time translation tools Bhaumik et al. (2023) [9],
Najib (2025) [10], Nadkarni et al. (2011) [20]], Kumar et al. (2023) [21].

D. Deployment on Edge and Mobile Devices
Developing models that are lightweight and efficient which can be deployed on smartphones, AR glasses, and other edge devices
without any specific system requirements is a key research direction. Optimizing the already available deep learning models using

pruning, quantization, and knowledge distillation techniques will play crucial role in achieving real-time translation of Sign Language
without depending on cloud infrastructure Papastratis et al., (2021) [4], Najib (2025) [10].
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E. Real-World Adaptability and Robustness

Models that are to be trained and evaluated should be trained under real-world conditions, such as different lighting condition,
occlusions, and complex backgrounds which will help in training the model that provides better efficiency. Furthermore, adaptive
models that can learn from user feedback and self-correct in dynamic environments can be implemented to improve long-term
usability and reliability Dignan et al. (2022) [3], Ibrahim et al., (2020) [14].

F. Ethical and Cultural Sensitivity in Model Design

As Sign Language Recognition systems are being deployed more widely, developers must not compromise with the cultural,
ethical, and accessibility considerations in their design or datasets. This includes respecting the linguistic identity of Deaf commu-
nities, ensuring privacy in data collection, and adding sign language users in the development cycle of the model and datasets as
well to co-design inclusive technologies Hussain et al. (2023) [15]], Adeyanju et al. (2021) [6].

V. CONCLUSION

This review paper provides a comprehensive discussion about Technologies used in Artificial Intelligence (AI) based Sign
Language Recognition Systems, particularly about Machine Learning and Deep Learning approaches. From early classical machine
learning models to deep learning models including CNNs, LSTMs, 3D-CNNs, Spatiotemporal models and real-time and lightweight
model with MobileNet, the field has taken significant steps in improving gesture recognition, translation accuracy and accessibility
for the users Alzubaidi et al. (2021) [31]], Al-Selwi et al. (2024) [32], Chen et al. (2021) [33], Nadkarni et al. (2011) [20], Kumar et
al. (2023) [21], Kadam et al. (2020) [25]. The comparative analysis shows that video-based inputs and Continuous Sign Language
Recognition (CSLR) have become the preferred choice of research and development due to their ability to capture dynamic gestures
and real-time interaction. Models like R(2+1)D CNNs, CNN-LSTM hybrids, and attention-based transformers have achieved notable
accuracy, especially when trained in vast and diverse datasets. Despite all the achievements these systems remain highly influenced by
the quality of datasets, signer variability, and deployment constraints. Apart from these, the major challenges that stays persistent are
data scarcity for low-resource sign language, generalizability for unseen signers and real-time processing limitations. Looking ahead,
Al-based Sign Language Recognition System holds tremendous amount of potential with real-time lightweight models, few-shot
learning techniques and integration with NLP and TTS technologies.
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Abstract

To increase the success of students’ education, it is important to be able to predict the level of
their involvement in the online educational environment. This study uses the Open University Learning
Analytics (OULAD) open dataset to develop a systematic and reproducible approach to classifying student
engagement. On the other hand, many other studies depend on specific datasets or limited definitions of
engagement. A full cycle of data preprocessing and feature extraction was implemented, aimed at obtaining
informative behavioral indicators based on click data and evaluation results. We trained and tested two
traditional supervised machine learning model, Random Forest and Logistic Regression, using weight
and macro-average metrics. The random forest model demonstrated high efficiency across all interaction
classes and showed higher accuracy (0.926) compared to logistic regression (0.896). The results obtained
emphasize the importance of high-quality data preprocessing and thoughtful design of features. In addition,
they confirm that such signs provide valuable information for the development of early warning systems
and the further development of educational analytics in higher education institutions.

Keywords: student engagement, learning analytics, feature engineering, preprocessing pipelines, classical machine learning,
Logistic Regression, Random Forest, OULAD

I. INTRODUCTION

The rapid development of online and high-tech educational environments has significantly changed modern education. Learning
management systems and virtual learning environments, widely used in distance learning, is now an integral element of both fully
online and blended learning models [14]. With the growing popularity of such platforms, it is becoming especially important for
educational institutions to understand and monitor the level of student engagement, as well as to monitor academic performance,
re-education, and course completion [15], [[16]]. Student engagement, usually determined by the level of attention, activity, and
effort expended in the learning process, is widely considered in scientific research as a reliable indicator of the effectiveness of the
educational process [3]], [17]], [18].
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Modern advances in learning analytics have made it possible to systematically analyze student interaction logs, assessment data,
and behavioral patterns recorded in virtual learning environments (VLE). These datasets offer numerous opportunities for building
predictive models, but because they are multidimensional, sparse, and heterogeneous, they require preprocessing to create useful
features. As a result of high-quality processing of the source data from the LMS system, they are transformed into important features
that increase the interpretability of models, predictive accuracy and reproducibility of results. As a result, the reliability of predicting
the level of involvement of students increases. [2]], [4].

An open data collection called Open University Learning Analytics (OULAD) was used to stimulate work in the field of research.
This data set contains demographic data, assessment results and detailed log files reflecting their activities in the educational process
in relation to 32,593 students who have completed 22 training courses. The total amount of data is more than 10.6 million activity
records per day. Such a large and informative data set makes it particularly effective for forecasting tasks.g [1].

In this study, we examined five supervised machine learning algorithms—random forest (RF), gradient boosting (GB), AdaBoost,
logistic regression (LR), and support vector machines (SVM) to classify student engagement levels. For a more in-depth study, we
chose logistic regression and random forest because they are highly accurate, stable, and easy to understand. This choice allowed
us to systematically compare the models, highlighting the importance of conducting accurate comparative analysis and obtaining
consistent results.

This paper presents three main scientific contributions: (1) developing an integrated feature engineering and data preprocessing
methodology for engagement prediction using OULAD behavioral data; (2) evaluating the performance of two well-known supervised
learning models: random forest and logistic regression; and (3) empirically demonstrating the most important features and algorithms
for engagement classification. By focusing on data preprocessing procedures and using traditional machine learning models, the results
provide a replicable framework and valuable recommendations for developing early warning systems and improving educational
analytics in higher education institutions.

II. LITERATURE REVIEW

Recently, researchers have paid special attention to student engagement in online learning, as it is directly related to academic
achievement, student retention, and course completion [15], [17]. Despite the growing popularity of this topic, many unanswered
questions remain regarding how to measure engagement, how to select factors for evaluation, and how to make accurate predictions
based on log data from educational platforms [[16]. In addition to summarizing the findings of previous studies, this review highlights
the crucial role of data preprocessing and feature generation in predicting student engagement.

A. Definitions and Aspects of Engagement in E-Learning

Digital learning engagement among students is a complicated and a multidimensional issue. There are various opinions in terms
of the effect on digital learning in education. There can be various possibilities what will be results of such kind of education. The
majority of learning analytics research in higher education is based on observable behavioral indicators such clicks, task completion
time, and login frequency, whereas the cognitive, social, and emotional aspects of engagement are frequently overlooked. Observable
features are used because it can be easier to get them and analyse thereafter, Although log data provides a more convenient way
to quantify behavioral engagement, this constraint restricts the efficacy of engagement models and the depth of understanding of
student participation [16].

Diversity and ambiguity in terminology, measurement methods, and annotation criteria across multiple studies and datasets
have been identified in recent reviews of automated engagement assessment [8]], [9]], [16]. Currently diversification is undergoing
increase. Only a few of them correlate with validated psychological scales, which makes it difficult for cross-study comparisons and
generalization of results [[15]], [17]. In this regard, the importance of using frameworks that cover the behavioral, cognitive, social,
and emotional aspects of engagement is emphasized, as well as the need for careful data preprocessing to transform heterogeneous
log data into informative signs of interaction [17]. These frameworks highlight the importance of preprocessing: changing mixed
raw data into clear and meaningful features that capture different parts of the engagement. Preprocessing is also very important in
terms of subsequent machine learning application because the data should be clean before we actually apply machine learning.

B. Practical Application of Learning Analytics for Engagement or Performance Forecasting

Research based on online learning data aims to predict the level of engagement and learning outcomes of students. Early work
has shown that predictive models that take into account behavioral, collaborative, and emotional components can serve as an early
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warning system [5]. Other studies focus on analyzing behavioral interactions in self-regulated and survey-oriented online modules,
including interaction with content, duration of activity, and resources used, demonstrating a close relationship between behavioral
traits and learning outcomes and engagement levels.

The consistency and sustainability of the engagement metrics extracted from LMS journals have a huge impact on academic
performance, and machine learning models trained on such data that usually demonstrate high predictive accuracy [16]. Developing
multimodal approaches by combining the analysis of gaze, facial expressions and actions shows that the integration of visual and
behavioral data makes it possible to more accurately assess engagement compared to using a single source of information [[17]. At
the same time, the majority of studies emphasize that the quality of data preprocessing and feature development directly determines
the accuracy of forecasting and interpretability of models.

C. Challenges, Limitations, and Gaps in Existing Research

Despite the progress made, there are still a number of challenges in this area. Many studies focus primarily on behavioral
indicators, while the cognitive and emotional aspects of the engagement remain insufficiently considered [S5], [15]. Approaches to
defining interaction protocols and annotations are inconsistent, and the use of validated scales is found only in a limited number of
papers [8]l, [16], [[17]. Large publicly available datasets are used relatively rarely, which reduces the possibility of generalizing the
results and reproducibility of research. Comparative studies of classical supervised machine learning algorithms are also insufficient,
which makes it difficult to identify sustainably effective methods. In addition, works devoted to replication and comparative analysis
are rare due to the variety of data sets and methodological approaches used, and the stages of data preprocessing are often described
superficially, which limits the reproducibility and practical applicability of engagement forecasting models.

D. Implications for the Current Study and Knowledge Deficiency

The literature emphasizes that predicting engagement is a dynamically developing field, but most research is limited to rigid
definitions, inconsistent indicators, and the use of specialized or small datasets. In this regard, there is an obvious need for systematic
research based on large publicly available data, the use of supervised machine learning methods and clearly described procedures
for preprocessing and feature development [8]].

Using the Open University Learning Analytics (OULAD) dataset and extracting meaningful behavioral characteristics through a
rigorous data preparation cycle, this work fills these gaps. Due to their high predictive performance, interpretability, and robustness,
logistic regression and random forest were selected for further investigation. By highlighting the critical role of data preprocessing in
obtaining consistent and understandable results, the proposed methodology establishes a replicable standard and provides empirical
evidence for the effectiveness of traditional engagement prediction algorithms [5].

III. METHODS

This section showcases the methods that we used and the methodology to achieve research aim that we outlined in the introduction
section.

A. Dataset Description and Rationale

This work utilized open source dataset. The study used the Open University Learning Analytics (OULAD) dataset, which
includes complete log-records describing student demographic characteristics, course metadata, evaluation metrics, and virtual
learning environment (VLE) activities [21].

Figure |I| showcases the snippet of the dataset that was used in our experiments.

B. Data Cleaning, Integration, and Feature Engineering

Before the application of machine learning, it is quite important to make preprocessing. Because without preprocessing, the data
will not undergo the required changes and the results might become biased or improper. Firstly, we dealt with missing values in the
dataset. We handled missing values of features based on their data types in the dataset. Because if the data type is string (text), then
it will have another strategy rather than if the data type of the feature was integer. For instance, we used the mode for categorical
features, whereas for numerical features we used median value as a replacement. We set unsubmitted assessment scores to zero. To
show that someone did not withdraw, missing unregistration dates were given a value of -1. We used features of id student, code
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Fig. 1: Snippet of dataset.

module, and code presentation to combine the tables. As a result, we put together features as total and average assessment scores,
total VLE clicks, normalized clicks per credit, and score per assessment. Other engineered features are the time between registration
and the start of a module and the length of time a person can participate.

C. Train-Test Partitioning

Division of the dataset into train and test is very important. Because even if the accuracy is high in training, it does not mean that
the accuracy will be high in testing part. The 80/20 stratified split was applied to preserve class distribution for classification tasks.
Stratification ensures reliable performance estimate by preventing over or under presence of any class. Two main models were used
in the work: logistic regression and random forest. At the initial stage, five classical algorithms were considered: LR, RF, Gradient
Boosting, AdaBoost, and the support vector machine method. LR and RF were selected for further analysis, as they demonstrated
a higher quality of forecasting, better interpretability and stability of the results.

D. Models

This section explains the models that we used in our study with corresponding justification of uses. To train logistic regres-
sion, a stratified 5-fold cross-validation was used with the adjustment of hyperparameters C' and solver. The evaluation metrics
used were macro-accuracy, macro-completeness, macro Fl-measure, and accuracy. Confusion matrices were visualized using the
seaborn library for visual analysis of the results. Logistic regression served as a transparent linear basic model reflecting the
general patterns of engagement levels. An accelerated workflow based on RandomizedSearchCV was used to train the random
forest model. This approach sampled a smaller number of hyperparameter combinations across n_estimators, max_depth,
min_samples_split, min_samples_leaf, max_features, and bootstrap. In order to reduce the calculation time and
increase the generalizability of the results, a stratified triple cross-validation was used. The same metrics were used for estimation
as for logistic regression, and confusion matrices were visualized using Matplotlib. This approach simplified the configuration
of the model and allowed us to take into account non-linear interactions and a complex data structure. The quality of the model was
assessed by accuracy, macro-average values of completeness and Fl1-measure, and the analysis of confusion matrices allowed us to
determine the nature of the forecast errors for each class. The combination of these indicators provided a comprehensive assessment
of the effectiveness of the model in predicting the level of student engagement.

IV. RESULTS AND DISCUSSION

This section showcases obtained results and the discussion of what we found with corresponding analysis of strengths and
weaknesses of our obtained results. To make hyperparameter tuning we applied grid search. It was applied to aim to get optimal
values for hyperparameters of the applied models. The logistic regression model was configured using a grid search to determine
optimal hyperparameter values:

C =1, solver = ’'liblinear’

The performance indicators of the logistic regression model are shown in tablem The overall accuracy of the model was determined
at 0.896, while the macro-average indicators of accuracy, completeness and F1 dimensions were also approximate to this value. The
classification report (Table indicates balanced results for both classes.
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TABLE I: Evaluation Metrics (Weighted & Macro) of Logistic Regression

Metric Score
Accuracy 0.8957
Precision (Macro)  0.8959
Recall (Macro) 0.8972
F1-score (Macro) 0.8956

TABLE II: Classification Report of Logistic Regression

Class Precision  Recall Fl-score  Support
0 0.93 0.87 0.90 3442
1 0.86 0.92 0.89 3077
Accuracy 0.90

Macro Avg 0.90 0.90 0.90 6519
Weighted Avg 0.90 0.90 0.90 6519

The results show that logistic regression provides a fairly accurate classification of student engagement, demonstrating a slight
improvement in completeness for class 1 and a slight increase in accuracy for class 0. The following optimal hyperparameter values
were determined for the random forest model (accelerated version):

n_estimators = 160, min_samples_split = 10, min_samples_leaf = 3,
max_features = None, max_depth = 15, bootstrap = True

In general, the random forest model surpassed the logistic regression, reaching an accuracy of 0.926. The macro-averaged values
of accuracy, completeness, and F1-measure also amounted to about 0.926 (Table . The classification report presented in hows
stable performance of the model in both classes, with a slight increase in accuracy for class 1 and completeness for class 0 compared
to logistic regression.

TABLE III: Random Forest Performance Metrics

Metric Score
Accuracy 0.9262
Precision (Macro)  0.9265
Recall (Macro) 0.9278
F1-score (Macro) 0.9262

TABLE IV: Random Forest Classification Report

Class Precision  Recall Fl-score  Support
0 0.96 0.90 0.93 3442

1 0.90 0.96 0.92 3077
Accuracy 0.93

Macro Avg 0.93 0.93 0.93 6519
Weighted Avg 0.93 0.93 0.93 6519

The findings demonstrate that Random Forest, employing an ensemble-based approach, markedly improves both accuracy and class
performance equilibrium in comparison to Logistic Regression. This study did not examine additional algorithms such as Gradient
Boosting, AdaBoost, and Support Vector Machines, as the integration of Logistic Regression and Random Forest demonstrated
significant efficacy and sufficient benchmarking for traditional supervised methods. We could focus on making sure our results
could be repeated, that our models were easy to understand, and that we were using well-known metrics for a strong comparison
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with this method. We created confusion matrices for both Logistic Regression (Figure 1) and Random Forest (Figure 2) to see
how well the models worked. These matrices show in great detail how well each model groups students based on how interested
they are. The confusion matrix shows that Logistic Regression worked about the same for both classes. Of the 3442 students who
were either low-engaged or failed, 93 percent were correctly classified, and 7 percent were incorrectly classified as high-engaged or
passed. In the high-engagement/pass category, 86% were accurately identified, whereas 14% were erroneously predicted to exhibit
low engagement/failure. This pattern shows that Logistic Regression does a good job of finding overall trends, but it does show a
slightly higher rate of false negatives in the high-engagement group.

2500

2000

Actual

- 1500

- 1000

- 500

Predicted

Fig. 2: Confusion matrix for Logistic Regression.

The Random Forest confusion matrix shows that it can now classify things much better. Ninety-six percent of the time, students
who did not participate or failed were correctly identified. Ninety percent of the time, students who did participate or passed were
correctly identified. Both classes make fewer mistakes than Logistic Regression. This shows that the model can find complicated
patterns and interactions that are not straight lines in the feature set. In general, Random Forest works better across classes and
makes fewer mistakes, which is what you would expect from its higher Fl-score and accuracy. These confusion matrices show
how important it is to perform preprocessing and feature engineering. Both models can tell how engaged someone is by making
meaningful behavioral features and making engagement signals across modules the same. The more complex, nonlinear interactions
in the dataset are what make Random Forest work best.
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Fig. 3: Confusion matrix for Random Forest.
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V. CONCLUSIONS AND FUTURE WORK

This study shows that classical machine learning models can effectively predict student engagement in online learning environ-
ments when used with a carefully designed preprocessing and feature engineering pipeline. We used the Open University Learning
Analytics Dataset (OULAD) in order to get behavioral indicators from clickstream and assessment data, which made it easier to
classify engagement in a more complete way. We looked at Logistic Regression and Random Forest, and we found that Random
Forest showed better accuracy and performance in all engagement categories. These results show that traditional supervised learning
methods can still be useful for predict engagement when they are used with careful preprocessing. They can also be considered
as clear, repeatable standards for research in learning analytics. This study shows that the preprocessing of data and the formation
of characteristic features have a decisive influence on the quality of the model. Converting the source information from the LMS
system into structured capabilities will enhance the interpretation of models and increase the accuracy of forecasting. Such approach
is important in the educational process for the early identification of risk groups and the development of effective training strategies.
The proposed method can be adapted to various educational data sets and conditions for conducting comparative analysis. In
upcoming studies, the use of time modeling, as well as the introduction of cognitive and emotional indicators obtained through
questionnaires and computer vision methods, can further improve the quality of the forecast. In addition, a comparison of classical
machine learning approaches with modern models of deep learning paves the way for a deeper understanding of the relationship
between interpretation capability and computational complexity.
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Abstract

A compact, single-supply, multilevel inverter (SC-MLI) topology based on a switched-capacitor structure
for high-efficiency power conversion is proposed. The overall goal of the study is to develop a three-stage
inverter that increases the voltage by a factor of 13 while simultaneously reducing the number of required
components. As a result, the proposed design reduces circuit complexity and cost while also increasing
reliability. The inverter’s performance was evaluated using theoretical analysis, MATLAB/Simulink and
PLECS simulations, and experimental verification. In addition, tests using a natural capacitor without
a control circuit or with resistive and inductive loads confirmed the stable generation of multi-level
voltage and voltage balance with additional sensors. For example, when operating in sinusoidal pulse-
width modulation (SPWM) and low-level control (NLC) modes, the inverter maintained low harmonic
distortion and a uniform current waveform. As a result, the system achieved a maximum efficiency of
97.2% in modeling and 95.3% experimentally. The results of this study confirm the Recommended Level
13 SC-MLI compliance for renewable energy integration and other advanced power electronics applications.

Keywords: amplifier inverter; multi-level inverters (MLI); renewable energy use; self-balancing voltage; variable capacitor (SC)

I. INTRODUCTION

The growing use of renewable energy sources [1] and high-energy-density batteries has made multilevel converters (MLCs)
increasingly popular in power electronics [2]. Modern systems require high efficiency, high power density, low harmonic distortion,
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and stable input voltage. Due to their structural advantages, MLCs enable high-quality DC—AC conversion and are widely used in
electric vehicles, microgrids, charging infrastructures, and renewable-energy-based installations [3]. However, classical methods such
as CHB, NPC, and FC require a large number of semiconductor components and independent power supplies, complicating circuit
design and control [4]. Switched-capacitor (SC)-based topologies offer numerous advantages, such as compactness, lightweight
design, high power density, and the elimination of the need for inductors for voltage conversion. These topologies make it possible
for applications like multi-channel power supplies and voltage management [5,6]. These topologies also enable voltage step-up
without the use of transformers, an advantage that distinguishes them from high-frequency magnetic systems [7,8]. Furthermore,
capacitors are easier to use and significantly less expensive than others because they are self-balancing. Most research papers classify
SC-MLI by the number of input sources, voltage step-up, and the number of output levels [10,11]. However, voltage fluctuations
and the formation of low-frequency harmonics can be affected by both continuous charging and discharging [12]. Overall, a lot of
work is being done on 13-level topologies, but since they require multiple input sources and a large component count, the work is
somewhat more challenging. Therefore, research initiatives are placing greater emphasis on single-power supply solutions. Similar
issues arise in 9-level designs, which have fewer connectors, more auxiliary components, and higher voltage between devices, the
same problems come up. This paper proposes a new SC-MLC topology that uses a single power supply consisting of 3 capacitors,
11 switches, and 3 diodes. This allows for the creation of 13 different output voltage levels. By using multiple components at each
level, these designs are more efficient than other solutions. The self-balancing feature means that additional balancing circuits are
not required, and the single-input structure makes the topology suitable for use in high-voltage networks. The main objective of
the research is to develop and experimentally verify a compact and productive SC-MLC architecture that reduces the number of
components and complexity of implementation while maintaining the required characteristics. The proposed topology was validated
under both low-frequency modulation and PWM operation, and simulation results were in full agreement with experimental findings,
clearly demonstrating the advantages of the proposed approach over conventional counterparts.

II. LITERATURE REVIEW OR RELATED WORKS

Multilevel converters (MLCs) are becoming increasingly valuable as interfaces in renewable energy systems such as photovoltaic
(PV) cells and wind turbines. This is because they can generate very good AC waveforms and reduce the load on the electronics caused
by high voltages. Early studies focused on standard MLC topologies, including diode-limited configurations, floating capacitors, and
cascaded H-bridges, which show that increasing the voltage level results in reduced harmonic distortion and improved sinusoidal
output waveform quality. Furthermore, most of these topologies cannot be directly used in low-voltage renewable energy systems.
As they require because they require separate DC power supplies or power transformers. Much of the research has focused on
improving topologies using switched capacitors (SCs) and switched inductors, i.e., multi-level topologies to boost the DC bus
voltage from low-voltage renewable sources. Hu et al. (2021) present a multilevel inverter with switched capacitors, fewer circuit
components, and improved voltage scaling capabilities; however, the topology does not achieve a high voltage gain using a single
input source. The proposed topology allows for increased output voltage and output levels by using fewer switches, diodes, and
capacitors, which means that it can still be used in renewable energy projects. Li (2018) describes a seven-level inverter with
only one phase and one DC power supply. The topology employs a set of switched capacitors to triple the input DC voltage.
Furthermore, it provides capacitor voltage equalization and prevents overscaling of power switches. Hussan et al. (2023) recently
demonstrated a multi-level inverter (TB-SCMLI). However, the topology requires a higher number of power components to achieve
similar voltage boosting. It is described as having fewer circuit components and capacitors and self-equalizing the voltage across the
switching capacitors, and is designed for renewable energy systems operating at high voltages. These studies indicate that significant
improvements can be achieved by significantly reducing the use of DC sources and increasing efficiency. A comparative summary
of recent switched-capacitor-based multilevel inverters is presented in Table I[I|

III. METHODS

The structure of a switched-capacitor multilevel inverter (SC-MLI) is shown in Figure 1. The basic structure consists of a
single DC power supply, ten power switches (H1—Hg4,S1—S5,andS1), three capacitors (C1, C2,andC3), and three separate
diodes (D1, D2, andD3). This device can produce 13 different output voltage levels with only one DC input. By adding switched
capacitors, the system can obtain a threefold the output voltage. The circuit provides energy flow from the DC power supply to both
the load and the capacitors through various combinations of switches. The capacitor C is charged directly with the source voltage
(VDC), and the capacitors C'2 and C3 share this voltage equally. The voltages across the capacitors are VC1 = VDC,VCq =
0.5V DC,andV Cs = 0.5V DC. This setup works well for boosting voltage, raising the total output voltage of the main circuit to
three times the input source voltage. Here, VDC denotes the input DC source voltage.
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TABLE I
SUMMARY OF RELATED WORKS ON BOOSTING MULTILEVEL INVERTERS

Author(s) Year | Key Findings DOI

Hu et al. 2021 | Proposed a switched-capacitor-based multilevel inverter with | doi:10.1002/2050-7038.12990
reduced circuit components and voltage boosting capability,
suitable for renewable energy applications.

Lee 2018 | Developed a single-phase, single-source seven-level inverter | doi:10.1109/ACCESS.2018.2842182
achieving triple voltage gain with automatic capacitor voltage
balancing and low switch voltage stress.

Hussan et al. | 2023 | Introduced a triple-boost switched-capacitor multilevel in- | doi:10.1049/pel2.12561
verter (TB-SCMLI) with reduced components and self-
voltage-balancing capacitors for sustainable energy systems.

+

HATPYKA

Fig. 1. Multilevel Converter with Triple Voltage Boost

The current flow channels established through the load and capacitors, corresponding to the positive, negative, and zero levels
of the output voltage demonstrate the operational principle of the proposed SC-MLI architecture. The red lines representpaths of
load current that occur when the capacitors discharge in different switching states. The green lines show the paths of charging
current that happen when the capacitors charge. The current path analysis shows that the new SC-MLI topology can provide 13
separate output voltage levels by using only one DC source and adding the voltages of the capacitors in the right order during the
right switching sequences. One of the a major challenge capacitor-based multilevel inverters (MLIs) is making sure that the voltage
is evenly spread out throughout the capacitors. In many modern topologies, this requires complex control algorithms that keep a
watch on capacitor voltages while they are being used. The architecture in this study allows for voltage self-balancing, therefore
there is no need for extra balancing circuits or complicated control algorithms. The capacitors in this structure charge and discharge
autonomously, which maintains the converter functioning smoothly without any extra systems to balance it out. However, careful
selection of capacitance values is required so that the voltage doesn’t shift too much. The maximum permissible discharging time
(MDT) and the load current during discharging periods are two critical factors that determine the choice of capacitance. If you get
the capacitance calculation right, the voltage will be stable no matter what the conditions are.

T
]\JDTC1 =14 — <5 — t4)

T
MDTc, = ]\4DTC3 =15 — (5 7t5>
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During maximum discharge periods, any variation in the capacitor charge directly affects the amplitude of the output voltage
ripple, as expressed in equation (1):

_ AQC,; _ 1 ty

Avgo, = = —
v C; Ci Ji,

ir, dt

where Avg, - is the voltage ripple across capacitor i during the time interval t, —t5, AQc, is the amount of charge discharged
to the load over this interval, and IL is the load current (which, in this case, coincides with the discharge current). The voltage drop
across capacitors during the maximum discharge time (MDT) is calculated as follows [7]:

AQc1 1 /T/Q”f‘L )
A = —=— dt
ver C1 C1 Jey ‘L
AQez 1 /T/ =ts
A =~ F¥s - dt
ve2 Oy Cs /., i
AQcs3 1 /T/Q_t5 )
A = = — dt
ve3 Cs s /., i

Since capacitor C7 discharges within the interval t4 — (7'/2 — t4), the required capacitance for a given ripple level is determined
using equation (2), derived from equations (3) and (4). Similarly, because the maximum discharge duration (MDT) for capacitors
Co and Cj is identical, their capacitances are calculated based on the interval t5 — (T/2 — ¢s5).

IV. RESULTS AND DISCUSSION

MATLAB/Simulink and PLECS were used to create simulation models to test the performance of the proposed SC-MLI topology.
To ensure reliability and comparability of results, identical circuit settings were used in both cases. The DC input voltage was set to
60 V, and the capacitance values C'1 = 2200 puF, C2 = C3 = 2200 uF were used for these theoretical calculations. The equivalent
series resistance (ESR) of all capacitors was 0.08 2. The converter was tested using near-level control (NLC) and sinusoidal pulse
width modulation (SPWM) by varying the load, switching frequency, and modulation index (MI). Figure 2(a) shows the simulation
results of the NLC model with three different types of loads: purely resistive (150 £2), resistive-inductive (150 Q2 + 50 mH), and
highly inductive (1502 + 200 mH). The output voltage can be varied in 13 different levels, but the current remains constant
regardless of the load value. Figure 2(b) shows how the voltage ripple changes when using floating capacitors. The ripple level for
each capacitor is always less than 10%. This confirms the correctness of the capacitor selection and the robustness of the proposed
architecture.
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Fig. 2. (a) Output voltage and current for different load conditions; (b) Voltage ripples across capacitors
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The suggested SC-MLI inverter was tested again with a weakly inductive load of (150 + 50 mH), utilizing both SPWM
and NLC modulation methods. Harmonic analysis was done to check the quality of the output current. Figure 3(a) shows that
the current waveform achieved with SPWM control is close to the ideal sinusoidal reference for the given load conditions. The
waveform generated using NLC control also exhibits adequate smoothness. Figure 3(b) shows the harmonic spectra. The total
harmonic distortion (THD) of the output current was 1.36 % for SPWM and 2.21 % for NLC. The THD value is a little larger
for NLC, but this approach still works because the proposed architecture creates a multilayer output voltage with a high resolution.
These results show that the inverter meets the requirements for harmonic distortion without needing high-frequency modulation
approaches.
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Fig. 3. Performance analysis of the proposed SC-MLI topology under SPWM and NLC control: (a) voltage and current responses;
(b) harmonic distortion (THD) evaluation of the output current

Figure 4 illustrates how the proposed 13-level SC-MLI was set up for testing, and Table 4 lists the main sections that were used.
A Genesys 2 Kintex-7 FPGA development board sent the power switches their control signals. You could program this board and
control the switching accurately. The prototype was tested with both solely resistive and resistive-inductive loads. The inverter’s
output voltage always had a steady multilayer structure, no matter what the modulation index (MI) or switching frequency was.
The results of the simulation and the real-world tests were remarkably similar, which shown that the design was correct and the
suggested topology was very reliable.

Using an FPGA, a control platform makes control signals for the Near-Level Control (NLC) method at 50 Hz with a full
modulation index. The initial test of the prototype was done with a load of (150 Q). Figure 5(a) illustrates the waveforms for the
voltage and current that went with it. Inductors of 50mH and 200mH were connected in series with the resistive load to see
how well the inverter worked with inductive loading. Figures 5(b) and 5(c) exhibit the output characteristics that show how the
waveform’s quality varies when the load inductance goes up. This demonstrates that the system maintains stable performance even
when the load changes.

The influence of modulation index (MI) variation on the inverter’s performance is shown in Figure 6. The 13-level SC-MLI was
operated sequentially at MI values of 0.3, 0.6, and 1.0, followed by a return to 0.3. The robustness of the control strategy during
these changes was demonstrated by the stability and uniformity of the output waveform. Similar to the frequency response analysis,
detailed transient interval plots were included to more clearly illustrate the transient behavior.
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V. CONCLUSION AND FUTURE WORK

In this study, an innovative single-source switched-capacitor multilevel inverter (SC-MLI) architecture is proposed, which can
provide 13 discrete voltage levels with a total of three gains. A comparative evaluation is carried out with the state-of-the-art
solutions of the last three years, taking into account the main design parameters, including the number of semiconductor switches,
the number of coupling capacitors and diodes, the total direct current voltage (TSV), the peak inverse voltage (PIV), and the
overall cost efficiency. The results show that the proposed design requires fewer active and passive components compared to
common single-source designs, which simplifies implementation, reduces hardware costs, and increases system reliability. Another
key advantage is the self-balancing of capacitor voltages, which is achieved without the use of auxiliary sensors or additional
control loops. Performance testing was carried out in sinusoidal pulse width modulation (SPWM) and near-level control (NLC)
modes. Theoretical analysis, simulation results, and experimental studies consistently confirm the effectiveness of this topology. The
results of comprehensive thermal simulations conducted in the PLECS environment showed that the system achieved an efficiency of
up to 97.2% in the power range of 100-1000 W. However, during experiments performed in laboratory conditions, it was found that
the practical efficiency value was at the level of 95.3%. In addition to meeting the harmonic distortion requirements, the proposed
SC-MLI structure provides high energy efficiency despite the small number of elements. This unique combination allows us to
consider this topology as a reliable and practical solution for next-generation multi-level inverters.

DC Sources
For Gate Drivers

R

Single DC Source

60VDC

. |

Switched

N:apacitors
~

s (

Fig. 6. Laboratory prototype and test bench configuration for the 13-level SC-MLI.

TABLE 11
SYSTEM PARAMETERS AND COMPONENTS

PARAMETERS

Input Voltage, V. 60 V

Output Voltage 180 V (peak)

Frequency 50 Hz

Max. Output Power 1000 W

COMPONENTS

Capacitors

Cl PG6DI (2200 pF, 600 V, ESR = 80 m2)

C2-C3 PG6DI (1200 pF, 600 V, ESR = 80 m{?)

Power Devices

IGBT IGW60N60H3 (Vg = 600 V, Ic = 60 A)
Fast-Recovery Diode | DSEI 60-06 (Iray = 60 A, VrRrm = 600 V, ¢, = 35 ns)
Controller FPGA Development Board (Genesys 2 — Kintex-7)
Output Loads Resistive (150 ), Inductive (50 mH + 200 mH)
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Abstract

The focus of this study is an initial-boundary value problem associated with the degenerate hyperbolic
equation t0yu + %c’hu — Au = g in a bounded domain. Due to the singularity at ¢ = 0, standard initial
conditions lead to an ill-posed problem. To achieve solvability of the problem, we introduce a “modified”
Cauchy problem using weighted initial conditions for this degeneracy. The main result of the study is the
proof of the well-posedness of this problem within the framework of classical Sobolev spaces, as well as
the obtaining of a priori estimates of the solution. Furthermore, the general boundary conditions for the
one-dimensional equation were derived by using the restriction and extension theory.

Keywords: degenerate hyperbolic equation, weighted initial condition, well-posed problem, spectral decomposition, weighted
Sobolev space

I. INTRODUCTION

Degenerate partial differential equations are a significant and challenging area of mathematical physics [1]]. Among them,
degenerate hyperbolic equations, characterized by change of type or loss of strict hyperbolicity in certain domains or at certain
moments in time, are of particular interest [2], [3]]. Such equations are often found in mathematical models of various physical
processes, especially in fluid and gas dynamics, and they arise naturally in classical elasticity and differential geometry.

The theory of strictly hyperbolic equations provides a clear and well-developed framework for the well-posedness of the Cauchy
problem. However, the study of degenerate hyperbolic equations is associated with significant difficulties, see [4]—[7]. This complexity
arises when a hyperbolic equation degenerates when the coefficients associated with lower-order terms within the hyperbolic equation
become singular (see [8]], [9]).

In general, obtaining well-posed solutions to the Cauchy problem for degenerate cases requires either imposing conditions on
the coefficients or considering a “modified” initial condition. As noted in classical works [[10], [[11]], the standard Cauchy problem
for such equations may not be well-posed without appropriate modifications. Therefore, a natural approach is to study a weighted
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Cauchy problem, in which the initial data are specified in a weighted form. This weighted formulation is essential to compensate
for the singularity of the operator at ¢ = 0 and to ensure that the solution remains bounded. For more details, see [12], [13] and
the references therein.

In this work, we investigate a modified Cauchy problem for a degenerate hyperbolic equation considered in the cylindrical domain
D = (0,T) x Q, where Q C R™ and T' > 0. In addition, we provide a characterization of all possible regular boundary value
problems associated with the corresponding singular ordinary differential equation by applying the restriction and extension theory,
specifically relying on Otelbaev’s abstract theorem.

II. PRELIMINARIES
A. Inhomogeneous linear ODE with singular coefficient
Let us consider the following ODE
1
ly =ty (t) + Ey'(t) +Ay(t) = f(t), te€(0,T), (eY)

where A > 0 is a fixed constant and f(t) is a given function.
First, we begin with the corresponding homogeneous equation

/() + 53/ (1) + u(®) = 0. @
It is well known that a fundamental system of solutions to this equation is given by the functions
y1(t) = cos2Vt, ya(t) = sin2V/AL.
To construct the general solution of (I), we apply the method of variation of parameters. We seek a solution in the form
y(t) = C1(®ya (1) + Ca(t)y2(1), 3

where C1(t) and C2(t) are functions to be determined. By imposing the standard condition C'{ (t)y1 + C4(t)y2 = 0, we arrive at
the following linear system for the unknown derivatives C (t) and C(¢):

CL(t)y1(t) + C5(t)y2(t) = 0,

() oy = T @
C1 )y (8) + CL(1)y5(t) = e
Substituting the explicit forms expressions for y1 and y2 and their derivatives we obtain
C1(t) cos 2V At + Ch(t) sin 2V At = 0,
(%)

—Ci(t)% sin 2v/At + C’é(t)% cos 2V/ A\t = @

We determine the derivatives C1 (t) and C4(t) from the linear system (3) by using Cramer’s rule. We start by calculating the
Wronskian determinant of the fundamental system

cos 2V A\t sin 2v/ A\t
W = det Y b
—4/ ?sin2\/)\t ?COSQ\/)\t

A /A
W = ;cos2v)\t-0052v)\t7 ( tsin2v/\t> -sin 2V At

(6)
A /A
= \/; [0052 2Vt + sin? 2V )\t] =\
Next, we compute the auxiliary determinants W1 (¢) and Wa(t)
0 sin 2v/\t ‘
Wi = det @ 2 = 7& sin 2V At, (7
- / 7 cos 2V AL t
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Aigul Zhumabayeva. All rights reserved.



43 Journal of Emerging Technologies and Computing (JETC), Vol. 3 No. 3 (2025)

cos 2v/ At 0 £t)
W = det X Fo) | = 7 cos2vine ®)
f\/;sin 2Vt - t

Consequently, the derivatives of the parameters are

Wy _ sin 2vV/ A\t

Cit)y= — =- t 9
Lo @ __cos 2v/ At
Ca(t) = W VN —=f(®). (10)
Integrating these expressions over the interval (0,t), we find the functions C (¢t) and Ca(t)
2
am=[ -2 \/[ F(€)dg + e, an
t 5 24/ \
Ca(t) = %f(&)df + ez, (12)

where c1 and c2 are integration constants.
Inserting the obtained functions C'1(¢) and C2(t) into the general solution yields

o(0) = —cos2Vat [ S22 fepte + sVl [ 28 pieyae

13)
+ ¢1 cos 2V At + co sin 2V \t.
To simplify the expression for the general solution (I3, we group the terms under a single integral,
)
t) = —[fcos2 At sin 24/ A€ + sin 2V At cos 2 )\]df
w(0) = [ T8 [ con2v/ATsin 2/5€ + sin2v/ R cos 21/ "
+ ¢1 cos 2V At + co sin 2V \t.
Applying the sine difference formula, the general solution admits the compact representation:
t
y(t) = / f/(l sin 2VA(VE — \/€)dE + ¢1 cos 2V AL + ca sin 2v/A (15)
0

We next introduce the Cauchy problem associated with the operator {. To determine modified initial conditions, we investigate
the behavior of the solution (I3) as ¢ — 0. First, we examine y(0)

y(0)=limy(t)=c1-1+c2-0=rcy.
t—0

Hence, the requirement y(0) = 0 forces
c1 = 0.

Let us next compute the derivative 3’ (t). Differentiating expression (I3) and simplifying yields
i) VA
't:/—cosZ\/X\/zf d¢ + co ——= cos2V At. 16
()= [ g os(2VAVE = VB )de + e2 7 cos2V/ (16)

Because the term 02% cos 2v/ At is unbounded as t — 0, the derivative y’(t) itself cannot be prescribed directly at ¢ = 0.

Instead, we analyze the limit of the weighted expression v/t %y(t):
d
li t—y(t) = A
tgré\f U =0+ caVA
For this weighted limit to remain finite, we must take co = 0. This choice provides the second initial condition

. d
Jim v/t Zu(t) =

Received: December 19, 2025. Reviewed: December 25, 2025. Accepted: December 26, 2025. © 2025 Nurbek Kakharman and
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As a result, the conditions defining a well-posed problem for the differential operator (I) are given below
d
= li 20 =o.
y(0)=0, lim Vi Ly =0
We can now state the full Cauchy problem as

ty"(t) + 39/ (1) + My (t) = £(b),

a7
y(0) =0, lim, o+ VEy(t) = 0.
And finally, the solution to the Cauchy problem is as follows
y(t) = /t 16 gn 2VA(VE — \/€)dE. (18)
0 VAL

B. Eigenvalue problem for the Laplace operator

In this section, we provide the definition of the eigenvalue problem for the Laplace operator with homogeneous Dirichlet boundary
conditions, followed by the associated lemma and theorem:

—Ap() = Ap(@), TEQ
19)
p(z) =0, x € 0.

The eigenfunctions {¢, () }£2 ; of the self-adjoint problem (T9) form a complete orthonormal basis for L?(£2), with eigenvalues
satisfying 0 < A1 < A < -+ — o0 (see, e.g., [14]).

Lemma IL1 (Orthogonality and simplicity [[14]). The eigenfunctions {og ($)}20:1 corresponding to the eigenvalues M\, form an
orthonormal system in L2(S2), i.e.,

¢k, pm)r2() = /Q%k(ﬂﬂ)sﬁm(x) dx = Sm,
where Sy, is the Kronecker delta.

Theorem I1.2 (Spectral decomposition and completeness [14]). The system of eigenfunctions {p(z)}$2 | is complete in L2(2).

III. MAIN RESULTS

A. Formulation of the Modified Cauchy Problem in a Bounded Domain

Let Q C R™ be a bounded domain with a sufficiently smooth boundary, specifically 9 € C?. We introduce the cylindrical
domain defined by D = (0,7T) x Q. Given a source function g € L?(D), we seek a function u that satisfies

1
Lu = tuy + Jut — Au =g(t,z), (t,z)€ D. (20)
The equation is supplemented by the following initial conditions
w(0,2) =0,  lim Viu(t,z) =0, z€Q, @1
t—0
and the homogeneous Dirichlet boundary condition

u(t, z)| 0, telo,T]. (22)

z€dQ —

To solve problem 20)-22) we employ the method of spectral decomposition. Consider the complete orthonormal system
{pr(2)}52, in La(£2), consisting of eigenfunctions of the spectral problem (T9), and let {1, }$2 ; be the corresponding eigenvalues.
According to Theorem [IT.2] both the solution and the source function can be expanded into Fourier series

u(t,) = > en@u(),  9lte) =3 er(@gn(t), @3)
k=1

k=1
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where the expansion coefficients are given by
yr(t) = /{; pr(z)u(t, z) dz, gk (t) = /Q pr(z)g(t, z) dz. (24)
From the initial conditions (ZI), it follows that for the coefficients yy (¢) satisfy
ue(0) =0, lim Vi (t) = 0.

Substitution of the series representation (23) into equation (20) reduces the partial differential equation to a one-dimensional
singular Cauchy problem for the coefficient yy,

1
leye = by (8) + Syk(8) + Ay (t) = fu(D), (25)
u(0) =0,  lim vyl (t) = 0. 26)
t—0
As established in the previous sections, the homogeneous equation [y, = O possesses solutions spanned by trigonometric
functions giving the general homogeneous solution as
yk,h(t) = C1 cos(2y/ At) + Casin(2+/ Agt). 27

Employing the variation of parameters method and applying the initial conditions (26) provides the unique solution to the singular

Cauchy problem @23)-(26):

t
n(®) = [ L& sin [o A - VB e 28)

Finally, substituting expression (28) back into (23)) leads to the following representation of the solution to @20)-22):

0 t
witn) = 3 n(@) ([ L s [ovmivi- v ac) 29)

B. Sobolev Regularity for the Singular ODE
We introduce the weighted Sobolev space W227t(07 T)={y:y € L?(0,T) and ty"” € W1(0,T)} with the norm

2

d
9wz 0 = e +lyllz o) G0

L2(0,T)

[z
-y
L2(0,T) dt

Lemma IIL1. Let f, € L?(0,T). Then the solution y;, € I/V227t(07 T) of the one-dimensional singular equation @3)—R6) satisfies
the estimate

”yk”Wz'{t(o,T) < c||fk||L2(0,T)7
where c is a constant.
Proof. Let v = v/t and define w(v) = y(v?). Then y(t) = w(\/t), and computing derivatives yields
w' (v) + Aw(v) = 4f(v?).

The solution 28) has the form
) = = [ sin (230 - 9)g(s)d
w(y) = — sin v —38))g(s)ds,
VX Jo

with derivative

w'(v) = 4/01) cos (2\5(1} — 5))g(s)ds.

Define g(v) = f(v2). Since f € L2(0,T), we have

VT
[ vlaPdy < .
0
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We show yj, € W} (0, T) by proving

T T
/ lyx (£)]2dt < oo and / |y, (£)]2dt < oo.
0 0

Using the substitution ¢t = v2, these become

VT VT | (v)]2
/ vjw(v)|?dv < oo and / Mdv < o0.
0

0 v

From the solution representation, we have the bounds
2 v , v
@l < = [lglds, W@ <1 [ gl
VA Jo 0
Using the bound on w, Cauchy—Schwarz, and Fubini’s theorem, we obtain
VT 16 vT
/ vjw(v)|?dv < —T5/4/ slg(s)|?ds < oc.
0 Sk 0
Similarly, with the bound for w’, we obtain

VT ! ()2 vT
/ Mdv < 64T1/4/ slg(s)|?ds < oc.
0 0

v

Using the transformation ¢ = v2, we obtain the following L? bounds
4 /8
lukllLz(o,r)y < \/TTkT I fkllz2 0,1y (€1)
and
”y;cHLQ(O,T) < 4T1/8||kaL2(O,T)' (32)

Which concludes T T
/ lyx (t))%dt < oo and / |y}, (£)]%dt < oo.
0 0

Equation @ can be rearranged to express the second derivative term:

() = Fu0) = k() — Meun (o),

From this, it can be concluded that

1"

1
([tui HL2(0,T) SkaHIﬁ(o,T) + ||§y;€||L2(O,T) + H)‘kkaH(o,T)
<ell il m o)

C. Solution estimates for general case
We define the (—Az)% acting on a function g € L?(D) by the following rule

(2229 =3 gV ren(a), (34)
k=1

. 1 x>
with the norm ||[(—Az)2g|12,, -, = 3 Melgw(t)]?
L¥(D) ~ &
Let W;f(D) be the weighted Sobolev space with the norm

02%u

lully2.2 = |t + 1 Aull 2 (py + llullp2(p)- (35)
2.t ot

L2(D)

|5
L2(D) ot
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Theorem IIL2. Assume that g€ L?(D) and that the condition
oo
S Am|gm (§)|2 < 00 holds. Then there exists a unique solution u € W227’t2(D) of the problem R0)- 22) that satisfies the

|m|=1

following inequality

1
+lAzullp2py +lull 2 (py < cllgllp2(p) + <o H“A“)Z’g‘ L2(D)’

H o2 L2(D) H

L2(D)
with constants ¢ and co depending only on T.

Proof. By Parseval’s identity, we have

T 1
ooy = > Pt < es [ 3 ((lanor?) a
k=1 0 =1 \"k

oo oo
By @D and 3% 3Lk ()1 < 5 52 lgw(D), we obain

||u||L2(D) <ca Z Hgk”L2(0 T) — Cng”%ﬁ(D)-

|

Similar considerations apply to Agzu, from @, we have

Similarly, by (32) we get
Ou||?

ot

< eallgl2a .
D

1
lAcull 2oy = Zukyk DI < el (=822 g125 -

Finally, rewriting equation (20) as
t82u (t,2) 1 0u N
— =gt,z)— = — u.
oz ~ Y 2 0t

Now it is easily seen that

=

82
’ (36)

t—u
ot?

< cllgliz2(py + o || (~2a) |

L2(D) L2(D)’

This proves the theorem.

IV. REGULAR BOUNDARY VALUE PROBLEM FOR THE SECOND-ORDER EQUATION
The aim of this section is to obtain general boundary conditions for equation (I) in the one-dimensional case. Our approach
relies on extension and restriction theory for differential operators, and in particular on the abstract theorem of Otelbaev [T3].
Defining the correct boundary conditions requires deriving the conjugate problem for the operator { (). The calculation of the

scalar product yields

1 3
{ty" + 5y + Ay, w) = (g, tw” + Su’ 4 Aw).

Thus, the conjugate operator is 3
Fw=tw" + 5 w' + lw.

Consequently, the Cauchy problem admits the following conjugate formulation

tw' (1) + Jw'(t) + dw(t) = o(t),
(37
w(l) =0, w'(1) =0.
The homogeneous problem 3
tw’ (t) + 5w’(t) + dw(t) =0,
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has a general solution of the following form

wt) =-q1 \/gsin 2Vt + ga1/ % cos 2V/At. (38)

where g1, g2 are arbitrary constants.
Now let us return to our general solution @, where constants ¢; and c2 that depend continuously and linearly on f; that is,

c1 = c1(f), 2 = e2(f).
By the Riesz representation theorem, these functionals can be expressed as
1 1
o = / oL (O f(t)dt, e = / o2 (t) (1),
0 0

where o1 and o2 belong to the kernel of the operator @) (see [[15]). We choose them in the form

o1(t) = —qu/% sin 2\/%, o2(t) = qz\/§ cos 2Vt

1 1
c1 = —q1/0 \/?Sin%/ﬁf(t)dt, co = q2/0 @cosme(t)dt.

Substituting these integral expressions into (I3), we derive the following expression for y(t):

_ [T fE)
y(t) = /0 e sin 2VA(VE — \/€)de—

/X /X
-q1 cos2v>\t/ 1/;sin2v)\tf(t)dt+q2 sin2v>\t/ 1/ ;cosQ\/Atf(t)dt.
0 0

Evaluating the integrals in (39) using integration by parts and rearranging the terms, we arrive at the corresponding boundary
value problem for equation (I):

—y(0) + a1 (—y ()VAsin(2VR) + y(1) cos(2VA) — Ay(0)) =0,

Consequently, we obtain

(39

40
LYV o
m

t—0+ \&
It is not difficult to observe that in the special case when the free constants g1, g2 are zero, we obtain the Cauchy problem. Writing
this boundary condition in matrix form

+ a2 (v (1)VXcos(2vA) + Ay(1) sin(2V3) ) = 0.

y(0)
—1—aq aqi cos 2v/a 0 —Vaqsin2y/a y(1) -0 @
0 av/aqe sin2y/a —1 aqz cos 2 /a lim, _, o+ Viy'e) |

y'(1)
The obtained results allow us to state the theorem

Theorem IV.1. The differential equation (I) has a unique solution satisfying the boundary condition @) for all f € L%(0,1) and
every q1,q2 € R.

V. CONCLUSION

In this work, we investigated the initial-boundary value problem for a degenerate hyperbolic equation with a singularity at ¢ = 0
by introducing a modified Cauchy problem with weighted initial conditions. We proved the well-posedness of this problem in
the weighted Sobolev space W22”t2 (D), derived the necessary a priori estimates for the solution, and using the theory of operator
extension, characterized the general regular boundary conditions for the corresponding one-dimensional singular ordinary differential
equation.
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