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Abstract

Artificial intelligence (AI) is increasingly transforming credit approval processes, enabling financial
institutions to assess risk more efficiently and at greater scale. As these systems become more embedded
in lending decisions, concerns around fairness, bias, and accountability have grown significantly. Many of
these concerns stem from the use of historical data, proxy variables, and model optimization choices that
can unintentionally reinforce existing social and economic inequalities. This work presents a systematic
overview of the types and sources of bias in AI - driven loan approval systems and critically examines
how machine learning techniques attempt to address them. It also highlights emerging solutions, including
explainable AI, federated learning, human-in-the-loop frameworks, and intersectional fairness approaches.
Despite ongoing advancements, unresolved challenges remain - particularly the need for dynamic fairness
monitoring and for addressing intersectional biases affecting individuals from multiple marginalized groups.
To bridge these gaps, the paper emphasizes the importance of interdisciplinary collaboration among AI
developers, regulatory bodies, and social scientists. It advocates embedding fairness as a core design
principle in the development and deployment of future AI systems. Overall, this study contributes to the
growing effort to develop more transparent, inclusive, and socially responsible financial technologies.

Keywords: AI bias, fairness techniques, loan approval, financial inclusion, regulatory compliance, algorithmic fairness, proxy
bias.

I. INTRODUCTION

Artificial Intelligence (AI) has significantly transformed decision-making in the banking sector, particularly through the automation
of lending approvals. These systems are often praised for their efficiency and scalability; however, they also raise critical concerns
regarding fairness and bias. Historical data used to train such systems may reflect past discriminatory practices, leading to models
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that perpetuate unfair outcomes. As a result, automated credit scoring and lending decisions may disproportionately disadvantage
underrepresented groups [1].

Bias in AI systems may also stem from algorithmic design choices, such as optimization objectives or feature selection. For
instance, if the training dataset is imbalanced, models may systematically favor majority groups. Variables like ZIP codes can
inadvertently encode socioeconomic or demographic biases, reinforcing existing inequalities. In some cases, the use of such features
may even violate regulatory frameworks, including the General Data Protection Regulation (GDPR) and the Equal Credit Opportunity
Act (ECOA) [1], [2]. Beyond ECOA and GDPR, emerging international frameworks—such as the EU AI Act and Canada’s Directive
on Automated Decision-Making—signal a global shift toward standardizing fairness and transparency in automated financial systems.
These evolving policies reflect the growing global consensus on the need for algorithmic accountability in financial decision-making.

This paper considered various contemporary fairness metrics used to detect and assess bias in AI-driven lending systems, as well
as a range of strategies designed to mitigate such biases [3]. Lending discrimination can originate from multiple sources, including
proxy variables that are correlated with race, gender, or economic status, as well as algorithmic priorities that favor accuracy at the
expense of fairness. These biases, if left unaddressed, may deepen economic inequalities by restricting equitable access to credit.

In deploying AI for credit decisions, it is essential to consider not only model performance but also fairness, ethical accountability,
and compliance with legal standards. Financial institutions must adhere to anti-discrimination laws and data protection regulations
such as the GDPR and ECOA [1]. These frameworks aim to ensure equitable treatment within algorithmic decision-making. However,
many current machine learning techniques struggle to balance fairness and accuracy effectively.

The goal of this work is to provide a comprehensive examination of machine learning approaches aimed at promoting fairness in
AI-powered lending systems [4]. It categorizes bias mitigation methods into three primary classes: pre-processing, in-processing, and
post-processing. It further analyzes the strengths and limitations of each approach in addressing algorithmic unfairness. The study
also examines the broader societal implications of discriminatory lending and contributes to the ongoing discourse by including
real-time fairness monitoring techniques and intersectional fairness considerations.

By offering an in-depth analysis of fairness-centered machine learning strategies, this paper contributes to the growing literature
on ethical AI in financial services. It synthesizes key trends in recent work and clearly identifies persistent gaps in current research.
Notably, we find a lack of robust methods for continuous (“live”) fairness monitoring in deployed lending systems and a deficiency
of techniques to address intersectional biases—cases where compounded disadvantages (e.g., being a minority and low-income)
fall through the cracks of one-dimensional fairness metrics. We also observe a disconnect between high-level ethical principles and
their practical implementation in AI lending algorithms. To help bridge these gaps, we propose future directions such as developing
dynamic equity monitoring tools and more holistic fairness metrics that account for intersecting social categories. Ultimately, the
insights from this systematic review are intended to inform the design of more transparent, inclusive, and accountable AI-driven
credit decision platforms, guiding both researchers and practitioners toward solutions that balance performance with fairness and
uphold regulatory and social standards.

A. Theoretical Frameworks of Fairness
In recent discussions surrounding AI-driven financial decisions, particularly automated loan approvals, several ethical frameworks

provide valuable insights into the concept of fairness. From a utilitarian perspective, fairness is assessed by evaluating whether
algorithmic outcomes maximize overall welfare or utility. This approach considers decisions fair if they enhance aggregate societal
benefit or utility, often prioritizing accuracy and profitability in credit scoring. However, this might inadvertently result in unequal
distributions of benefits and harms [30], [31].

Alternatively, Rawlsian fairness, rooted in John Rawls’s notion of justice as fairness, emphasizes distributive justice aimed
explicitly at improving conditions for the least advantaged. Rawls’s Difference Principle asserts that any inequality is justified only
if it benefits those most disadvantaged [32], [33]. Applying this framework to lending implies that fairness-oriented interventions
should protect vulnerable borrowers and mitigate disparities that could otherwise exacerbate their disadvantages [34].

Furthermore, the emerging computational justice framework proposes integrating egalitarian principles directly into AI systems.
This framework stresses the importance of equitable access, representation, and outcomes, ensuring algorithmic lending practices
provide fair opportunities across diverse socioeconomic backgrounds and proactively address biases [35], [36].

Collectively, these ethical perspectives—utilitarianism, Rawlsian fairness, and computational justice—serve as complementary
lenses, enriching our understanding of fairness in AI-driven financial services. They guide the design and assessment of algorithms,
promoting fairness that encompasses both efficiency and equity, particularly benefiting vulnerable populations.

Received: April 3, 2025. Reviewed: April 16, 2025. Accepted: April 22, 2025. © 2025 Suraiyo Raziyeva and Meraryslan
Meraliyev. All rights reserved.
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II. METHODOLOGY

To carry out a comprehensive and objective evaluation of fairness-centered, AI-driven loan approval systems, this study adopts
the systematic literature review (SLR) methodology. This approach enables a structured examination of existing scholarly work,
facilitating the identification of prevailing trends, emerging challenges, and methodological limitations associated with fairness-aware
AI in financial decision-making.

A. Search Strategy
The literature search focused on peer-reviewed journal articles, conference proceedings, and preprint research published between

2020 and 2024. Key academic databases were utilized, including Scopus, Google Scholar, IEEE Xplore, the ACM Digital Library,
and arXiv—chosen for their extensive coverage of publications related to artificial intelligence, machine learning, and financial
technologies. A combination of keywords and Boolean operators was applied to ensure the inclusion of relevant and high-quality
studies. The following search terms were used:

• ("fairness-aware machine learning" OR "bias mitigation in AI")
• AND ("loan approval" OR "credit scoring" OR "financial decision-making")
• AND ("pre-processing" OR "in-processing" OR "post-processing")

Fig. 1. Systematic Literature Review (SLR) Process: from initial identification to final selection.

Figure 1 illustrates the step-by-step review process applied in identifying relevant literature for this study. Initially, database
searches yielded 500 records from Scopus and 550 from Google Scholar, totaling 1050 records.

B. Inclusion and Exclusion Criteria
Studies were selected as suitable if they comprehensively addressed bias mitigation methods, specifically in AI-driven loan

approval systems. Preference was given to studies explicitly employing fairness-aware techniques categorized into pre-processing,

Received: April 3, 2025. Reviewed: April 16, 2025. Accepted: April 22, 2025. © 2025 Suraiyo Raziyeva and Meraryslan
Meraliyev. All rights reserved.
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in-processing, or post-processing methods. Priority was also given to studies providing empirical evaluations of fairness-accuracy
trade-offs and discussions aligned with regulatory and ethical frameworks, such as the General Data Protection Regulation (GDPR)
and the Equal Credit Opportunity Act (ECOA).

Studies were excluded from the review if they addressed fairness exclusively in non-financial contexts, such as healthcare or
employment. In addition, works lacking quantitative evaluations or those that did not propose explicit bias mitigation strategies
were omitted. Non-peer-reviewed sources, including editorial commentaries and opinion articles, were also excluded to ensure the
inclusion of rigorously vetted research.

Initially, 73 records were retained after duplicate removal and initial filtering based on relevance. These underwent a full-text
eligibility assessment, after which 30 articles remained. Following rigorous quality assessment and further evaluation for relevance
and context, a final set of 22 high-quality and contextually relevant studies was selected for detailed comparative analysis.

C. Data Extraction Process
Following the selection of relevant studies, key information was carefully extracted to support a meaningful comparison of

fairness-aware machine learning techniques. This included identifying the specific types of bias each study addressed - such as
historical, sample, algorithmic, proxy, or societal bias. The review also categorized the mitigation methods based on the stage
at which they were applied: before training (pre-processing), during training (in-processing), or after model deployment (post-
processing). Particular attention was given to empirical findings, especially how each approach balanced fairness with predictive
accuracy, using metrics like statistical parity difference, equalized odds, and disparate impact ratio. Finally, the analysis considered
how well each technique aligned with existing financial regulations and ethical standards.

D. Quality Assessment
Each study was assessed based on clarity of methodology, empirical rigor, practical applicability, and regulatory alignment to

ensure the robustness and relevance of findings. After this detailed quality assessment and eligibility evaluation, a final set of 22
studies were included in the comparative survey.

The collected data were analyzed to evaluate the comparative strengths, limitations, and practical applicability of each technique.
This analysis provided insights into how different bias mitigation strategies perform in real-world contexts and highlighted inherent
trade-offs.

III. TAXONOMY OF BIAS AND FAIRNESS TECHNIQUES

A. Categorization of Bias in AI-Based Loan Approvals
Recent developments in fairness research have introduced new ways to reduce bias. For instance, federated learning allows

models to be trained across different datasets without centralizing data [5]. This approach keeps personal information private and
helps reduce geographical and demographic biases. We also have real-time fairness monitoring systems. These systems continuously
check and adjust model performance after deployment to address any changes in bias [6]. Finally, new intersectional fairness metrics
consider the combined effects of biases on people who belong to multiple disadvantaged groups [7]. This promotes more inclusive
lending practices.

Table I provides a clear comparison of different bias mitigation techniques used in fairness-aware machine learning, grouped
by when they are applied in the modeling process: before training (pre-processing), during training (in-processing), or after the
model has been trained (post-processing) [8]. The table outlines how each method typically performs in terms of improving fairness,
the extent to which it affects model accuracy, and how complex it is to implement. As shown, pre-processing techniques like
reweighing and data balancing are relatively easy to apply and don’t significantly impact accuracy, but they may offer only modest
improvements in fairness [4]. In contrast, in-processing methods, such as adversarial debiasing, tend to be more effective in reducing
bias but are also more complex and may involve trade-offs in performance [8], [9]. Post-processing approaches are often useful for
adjusting outcomes in already trained models, though they can sometimes lead to inconsistencies or reduced interpretability [11].
This comparison helps highlight the practical choices researchers and developers must make when selecting fairness techniques,
depending on their goals, constraints, and the context in which the model will be used.

B. Fairness-Aware Machine Learning Techniques
To mitigate the impact of bias in AI-driven lending, various fairness-aware machine learning techniques have been developed.

These techniques can be classified based on when they are applied during the model development process:

Received: April 3, 2025. Reviewed: April 16, 2025. Accepted: April 22, 2025. © 2025 Suraiyo Raziyeva and Meraryslan
Meraliyev. All rights reserved.
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TABLE I
SUMMARY OF BIAS TYPES AND CORRESPONDING MITIGATION TECHNIQUES IN AI-BASED LOAN APPROVAL SYSTEMS.

Bias Type Application in Loan Ap-
provals

Key Features and Challenges Performance Analysis/Remarks

Historical Data
Bias

AI models learn from past loan
decisions.

Reflects systemic inequalities in
training data, leading to biased out-
comes.

Replicates historical discrimination: re-
quires data rebalancing or de-biasing
techniques.

Sample Bias Models trained on non-
representative datasets.

Leads to poor generalization for
underrepresented groups.

Reduces model accuracy for diverse
populations: mitigated by re-sampling
or balanced datasets.

Algorithmic Bias Introduced during feature se-
lection or optimization pro-
cesses.

Favors majority groups due to im-
balanced cost functions or fea-
ture correlations with protected at-
tributes.

Reduces fairness, mitigated by fairness-
aware algorithms and optimization
strategies.

Proxy Bias Use of correlated attributes as
substitutes for sensitive ones.

Leads to indirect discrimination
when proxies represent protected
characteristics.

Compromises fairness: requires re-
moval or neutralization of proxy vari-
ables.

Amplification
Bias

AI systems intensify existing
disparities in training data.

Magnifies inequities by reinforcing
patterns of inequality present in
datasets.

Increases systemic bias: mitigated
through fairness monitoring and
algorithmic adjustments.

Societal Bias Societal prejudices embedded
in datasets influence AI deci-
sions.

Reflects societal inequities like
gender or racial discrimination, in-
fluencing model outcomes.

Preserve inequality addressed through
societal-level reforms and ethical AI
frameworks.

1) Pre-Processing Techniques: As a pre-processing method, transformation techniques are applied to manipulate the
dataset before machine learning models consume the data to get unbiased data and equal representation. These include approaches
to resampling, creating synthetic data, and finally, removing proxy variables so that the dataset fairly represents all demographic
groups. Such methods mainly target historical and sample bias but must be carefully tuned to ensure the utility of the data. Increasing
data for underrepresented groups should re-balance the data set and improve fairness and minimal prediction accuracy reduction [5].

2) In-Processing Techniques: In-processing methods include fairness constraints in the process of training a model. These
algorithms optimize fairness metrics, such as demographic parity or Equalized Odds, and traditional accuracy metrics. The models
balance fairness and performance by embedding these constraints into the learning objective. In-processing techniques go well with
modern AI frameworks, which consider fairness-aware algorithms one of the strong approaches toward handling algorithmic bias
[9].

3) Post-Processing Techniques: Post-processing methods take an already fitted model and perform whatever adjustments
necessary to the model outputs so that the resulting predictions satisfy some notion of fairness, be it demographic parity or Equalized
Odds. While post-processing methods allow for easy retrofitting of fairness into many existing models, they come at a small cost
in the overall predictive accuracy of the model. In practice, these methods are used when it is infeasible to modify the process by
which models are trained or the data on which they are trained [11].

C. Empirical Findings: Fairness - Accuracy Trade-offs
Empirical studies of fairness-aware machine learning techniques reveal a complex interplay between predictive accuracy and

fairness outcomes. In the context of automated loan approvals, achieving both high performance and equity across demographic
groups is rarely straightforward. This subsection synthesizes empirical findings from the reviewed literature to highlight observed
trade-offs, using metrics such as statistical parity difference (SPD), equalized odds, and disparate impact ratio (DIR).

Received: April 3, 2025. Reviewed: April 16, 2025. Accepted: April 22, 2025. © 2025 Suraiyo Raziyeva and Meraryslan
Meraliyev. All rights reserved.
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Pre-processing techniques, such as reweighing and massaging the training data, often lead to modest improvements in fairness
metrics like SPD and DIR, particularly in datasets with high initial bias. However, these improvements can come at the cost of
reduced predictive accuracy, especially when the modified data distribution diverges from the underlying population [3], [11].

In-processing methods, including adversarial debiasing and fairness-constrained optimization, tend to achieve a better balance
between fairness and accuracy. Several studies demonstrate that models trained with fairness constraints are capable of maintaining
comparable AUC scores while significantly reducing disparate impact [15]. However, these methods often require extensive tuning
and longer training times.

Post-processing techniques such as reject option classification or calibrated equalized odds adjustments are shown to be effective
when model retraining is not feasible. While these approaches can achieve compliance-level improvements in fairness indicators
like DIR (moving from below 0.8 to above the threshold), they sometimes reduce classification confidence, especially near decision
boundaries [26].

D. Comparative Analysis of Fairness Metrics and Mitigation Techniques
Bias mitigation strategies in machine learning for loan approval systems are commonly grouped into three categories: pre-

processing, in-processing, and post-processing. Each group offers distinct advantages and limitations depending on the context in
which it is applied.

Pre-processing techniques attempt to transform the training data to remove bias before model training. Methods such as reweighting
and sampling adjustments are often model-agnostic and relatively easy to apply. However, they may risk distorting the original data
distribution, which could reduce model performance in certain applications.

In-processing techniques modify the learning algorithm itself by incorporating fairness constraints or altering the loss function.
These methods, such as adversarial debiasing or fairness-constrained optimization, tend to offer a strong balance between accuracy
and fairness. However, they often require access to and modification of the model’s internals, making them less applicable to
proprietary or black-box systems.

Post-processing techniques alter the model output without changing the model or data. Examples include reject option classification
and calibrated equal odds. These methods are typically easy to implement but may offer limited fairness correction, especially if
bias is deeply embedded in the model structure.

evaluation is further complicated by the choice of metric. The most widely used measures include:

• Statistical Parity Difference (SPD) – measures the difference in positive outcomes between privileged and unprivileged groups.
It is simple but may ignore performance discrepancies.

• Disparate Impact (DI) – computes the ratio of favorable outcomes across groups. It is widely used in regulatory contexts but
sensitive to class imbalance.

• Equal Opportunity Difference – measures the true positive rate gap between groups, emphasizing fairness in correctly approved
applications.

• Average Odds Difference – considers both true positive and false positive rates across groups, offering a more nuanced view
of fairness.

In practice, there is often a trade-off between fairness and accuracy. For example, post-processing techniques may improve DI
but slightly reduce ROC-AUC. In contrast, in-processing methods like adversarial debiasing may maintain accuracy but increase
computational cost.

The comparative analysis conducted in this review suggests that fairness-aware learning remains a multidimensional problem
where technical performance must be balanced with ethical and legal considerations.

E. Case Studies on Bias Mitigation in AI-Based Loan Approval Systems
Bias mitigation in AI-driven loan approval systems has been the focus of active study through numerous case studies that detail the

best strategies for the implementation of fairness and transparency. Figure II provides a summary of representative case studies that
have examined various fairness-aware strategies in credit decision-making. The table highlights not only the technical contributions
but also the domain-specific applications and the diversity of fairness concerns addressed in the literature. These case studies present
a range of real applications and tests of methods related to bias mitigation within a wide array of domains relating to financial
services. Below are summaries of key recent findings: Purificato et al. (2023) and Lorenzo (2019) both incorporate explainable

Received: April 3, 2025. Reviewed: April 16, 2025. Accepted: April 22, 2025. © 2025 Suraiyo Raziyeva and Meraryslan
Meraliyev. All rights reserved.
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AI techniques—such as the Trust, Reliance Scale,1 and SHAP values—to promote transparency and user trust, enabling clearer
justification for credit decisions [12], [13]. In contrast, Dattachaudhuri et al. (2022) focus on rule extraction and rule pruning toward
the same goal and outline the manner in which interpretability can complement and exist separately from typical model structures
[11]. Regulatory focus enhances the work of Nadeem et al. (2023), who connect fairness interventions directly into organizational
practice and emphasize the need for embedding algorithmic remedies within larger-scale institutional change [14]. A second group
of studies addresses fairness from the systems-level or technical perspective. Wang et al. (2023) introduce a human-in-the-loop
framework that enables real-time correction of bias through interactive feedback [15], while Zhou et al. (2022) address bias, privacy,
and regional imbalance simultaneously through federated learning [16].

Parra et al. (2022) address the problem from the data perspective, looking at how proxy variables such as ZIP codes may
introduce bias inadvertently and describing how to nullify their effect [17]. Finally, there are a few papers that focus on fairness-
performance trade-offs. Karimova (2024) investigates optimization techniques that balance fairness and precision in micro-lending
in small businesses [18], while Cozerenco and Szafarz (2015) adopt a co-financing strategy in microfinance for reducing gender
bias, illustrating a policy intervention specific to the field rather than a technical one [19]. Overall, the papers illustrate that while
fairness is the common target, the paths towards its realization are very distinct depending on the field, purpose, and limitations of
the credit system.

IV. EMERGING TRENDS AND POTENTIAL IMPROVEMENTS

Recent developments in AI-driven financial decisions have marked a milestone toward a solution for bias and for the promotion
of fairness. Specifically, fairness-aware frameworks with integrated XAI tools have become a game-changing solution for improving
transparency and rebuilding stakeholder trust. Ashraf and Faheem 2021 [21] proposed XAI-based fairness detection frameworks.
These frameworks ensure equity as well as accountability within credit ratings by eliminating algorithmic biases. On the other hand,
Garcia et al. (2023) [22] also put great emphasis on systematic bias detection and fairness metrics as being very important in order
to reduce both societal and algorithmic discrimination in loan approval systems. Federated learning has also been highlighted as
a means of training AI on various data without the sharing of private information. Zhou and Tang (2022) [25] have demonstrated
their potential in trying to reduce geographical and population biases while maintaining strong information security in financial
institutions. Interpretable machine learning for finance has also seen developments in tools such as the SHAP technique, which is
designed to give insight into how decision-making is derived by algorithms. SHAP has been shown to increase transparency and
build trust in AI-driven credit decisions, according to Lorenzo 2019 [24], which was one of the concerns that stakeholders had.
Other innovative techniques have recently emerged as human-in-the-loop frameworks that solve the challenge of bias dynamically at
deployment. Wang et al. (2021) [26] have proposed iterative correction mechanisms that use user feedback to improve fairness in AI.
Recently, critical activities have taken place to handle gender bias in financial services. Likewise, Parra et al. (2022) [24] highlighted
the role that decorrelating variables has in lessening proxy bias via the removal of disparities within input features. In conclusion,
many meaningful advances have been made in the development of fairness-aware machine learning techniques. However, ensuring
ethical and unbiased outcomes in AI-based lending remains a complex and evolving challenge. The emerging trends discussed - such
as real-time fairness monitoring, intersectional fairness, and the integration of explainability—reflect a growing awareness of both
technical and societal dimensions of algorithmic bias. However, these innovations also highlight the need for ongoing interdisciplinary
collaboration, stronger regulatory guidance, and scalable, context-sensitive solutions. As financial institutions continue to adopt AI
technologies, it is essential that fairness is treated not as an optional add-on but as a core design principle embedded throughout
the development and deployment process.

A. Research Directions
Despite these advances, important research gaps and opportunities remain. First is an increasing need for the actual development

of real-time fairness monitoring systems that can automatically detect and adapt to changing biases. Such systems can help financial
institutions uphold the concept of fairness as time changes with data distribution. Moreover, further work is to be done on improving
the so-called fairness-aware algorithms, such as Random Forest models, which balance between fairness and predictive performance,
as was shown in the work of Karimova (2024) [4], in order to reach the optimal solution for such a diverse and complex financial
context [27].

1This scale, introduced by Purificato et al. (2023), is a previously established framework used to assess user confidence in AI
decisions. It is not newly developed in this manuscript.
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TABLE II
CASE STUDIES ON BIAS MITIGATION IN AI-BASED LOAN APPROVAL SYSTEMS.

Case Study Authors (Year) Key Contributions Application

Fair Lending Tool for
Credit Decisions

Erasmo Purificato et al.
(2023)

Developed fairness-aware frameworks incorpo-
rating Explainable AI (XAI) and Trust & Re-
liance Scale for evaluating AI systems.

Fair credit assessment and
monitoring

Transparent Decision Sup-
port for Credit Risk

Abhinaba Dattachaudhuri
et al. (2022)

Proposed a neural network-based decision sup-
port system enhancing transparency through rule
extraction and pruning techniques.

Transparent credit scoring

Algorithmic Jason Jia-Xi Critiqued existing legal frameworks like ECOA
and advocated harm-based frameworks to ad-
dress AI-driven discrimination.

Credit underwriting fair-
ness

Gender Bias in Loan Al-
locations

Ayesha Nadeem et al.
(2022)

Examined gender biases in loan allocations and
proposed integrating fairness-aware algorithms
with organizational changes for equitable out-
comes.

Gender bias mitigation in
loan allocations

Interactive Approach to
Bias Mitigation in ML

Hao Wang et al. (2021) Introduced an iterative human-in-the-loop ap-
proach for bias mitigation, combining feedback
loops and interactive visualization.

Iterative bias detection in
ML applications

Federated Learning for
Loan Approvals

Zhou et al. (2022) Proposed federated learning approaches to pre-
serve privacy while improving fairness and
reducing geographical biases in decentralized
training datasets.

Privacy-preserving credit
risk evaluation

Addressing Proxy Bias in
Lending

Parra et al. (2022) Highlighted the role of proxy variables like
ZIP codes in embedding discrimination and pro-
posed mitigation strategies such as variable de-
correlation.

Mitigating proxy bias in
lending

Bias in Microfinance Sys-
tems

Cozarenco & Szafarz
(2015)

Analyzed biases in microfinance systems, partic-
ularly gender-related biases, and emphasized co-
financing mechanisms to address discriminatory
patterns.

Gender fairness in micro-
finance

SHAP for Fairness in
Credit

Lorenzo (2019) Demonstrated the use of SHAP for interpreting
credit scoring models, emphasizing its applica-
tion in detecting and mitigating algorithmic bias.

Explainable AI for credit
scoring

Fairness Metrics in Loan
Decisions

Karimova (2024) Introduced fairness-aware optimization tech-
niques using Random Forest models to evaluate
and reduce biases in small business loan deci-
sions.

Optimizing fairness in
small business loans

In the future, fairness metrics would need further refinement for capturing intersectional biases that disproportionately affect people
who belong to more than one disadvantaged group. Interdisciplinary collaboration between practitioners in AI, regulators, and social
scientists is badly needed to develop ethical frameworks that align technological innovation with societal values. Increasing federated
learning beyond the currently explored use cases might advance inclusive global financial systems and safeguard data privacy.
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B. Discussion
AI-powered loan decision engines have turned a new leaf and become truly transformative forces that change the paradigm of

operation scale and efficiency in the realm of finance. However, recurrent bias raises problems in ethical and regulatory paradigms,
raising some serious questions about algorithm fairness. Recent work suggests some ways to diminish these; at a similar scale,
there continue to be many challenges to reaching equal, transparent AI systems. One of the most relevant developments is the
development of frameworks and tools for fairness. These frameworks allow explainable AI and transparency that relates to a clear
look at how AI comes up with its decisions to stakeholders; for example, Lorenzo has shown that it can be done through better
interpretability of credit scoring using SHAP [29]. On the other hand, Purificato et al. (2023) have proposed the Trust, Reliance
Scale, an approach to embed fairness in AI systems so that the latter could be held accountable for the decisions made [29]. The
key issue is gender bias in loan distribution. Nadeem et al. (2022) have proposed a socio-technical fairness framework that can
serve to overcome systemic and algorithmic biases, especially affecting provisions for financial services related to women [15].
Another point of interest is proxy bias. Examples of strategies, such as variable de-correlation, that may be used for eliminating
the indirect discrimination given by features like ZIP codes or levels of education are provided by Parra et al. (2022) [16]. Other
techniques, such as federated learning, took the cause further in terms of fairness. Zhou and Tang 2022 showed how Federated
learning decreases geographical and demographic biases by taking away the centralization of the training of the model [25]. This
allows inclusiveness while providing protection against sensitive information. Iterative bias mitigation through human-in-the-loop
frameworks discussed by Wang et al. 2021 allows dynamic changes in deployment for evolving biases [26]. Advantages, however,
have many problems. The problem of bias in AI models is dynamic and thus can always be subject to the detection, capturing, and
correction of constantly evolving disparities by certain monitoring mechanisms. Karimova, 2024 [4]. The paper proposes a fairness-
aware optimization of Random Forest algorithms that strikes a balance between predictive accuracy and fairness in granting loans
to small businesses [17]. At a wider scale, such implementation still remains resource-intensive. Another important and complex
issue to mention is the intersectionality of biases: persons having more than one disadvantaged group they identify with. Most
of the existing fairness metrics are not correctly positioned to handle these interactions in compound ways. This calls for future
research in developing holistic metrics that address nuances around intersectional fairness. Integrating ethical frameworks: this aligns
technological advancements with placing value on society [28]. In return, this would require collaboration among AI researchers,
regulators, and social scientists. Much has been done, yet significant steps to handle the biases of AI in loan approval systems
are long in coming. Dynamic fairness-monitoring systems, intersectional fairness metrics, and robust frameworks pave the way for
equity in financial decision-making. In this regard, further innovation will have to negotiate a delicate balance between ethical and
regulatory imperatives if the gap between technical capability and societal expectation is to be bridged [29].

V. CONCLUSION

This study investigated the sources of bias in AI-driven loan approval systems and critically evaluated fairness-aware machine
learning techniques designed to mitigate such biases. It examined a spectrum of approaches: pre-processing, in-processing, and
post-processing methods-and discussed their comparative effectiveness, implementation challenges, and the trade-offs they present
between model fairness and predictive accuracy. Special attention was given to how these techniques align with regulatory frameworks
and ethical standards, particularly in high-stakes financial decision-making.

In addition, the study identified a number of emerging tools and frameworks-such as explainable AI (XAI), federated learning, and
human-in-the-loop architectures-that hold promise for making AI systems more transparent, accountable, and adaptable to real-world
complexities. These advances support auditing and improving credit scoring algorithms.

Despite this progress, the study revealed several ongoing limitations. Chief among them is the lack of dynamic fairness monitoring
systems that can detect and adjust for bias as models interact with evolving data environments. Moreover, current mitigation strategies
often fall short in addressing intersectional biases-situations where individuals experience multiple, overlapping forms of disadvantage
based on race, gender, socioeconomic status, and other factors.

To effectively confront these issues, the paper underscores the need for sustained interdisciplinary collaboration among AI
developers, policymakers, legal scholars, and social scientists. Such collaboration is essential for translating abstract fairness principles
into actionable design practices and policy guidelines. The paper strongly advocates for embedding fairness not as a secondary
consideration, but as a core tenet throughout the life cycle of AI systems-from data collection and model training to deployment
and evaluation.

Meeting this challenge will require more than algorithmic innovation; it will demand a deep ethical commitment and policy
coherence to ensure that technological advancements do not exacerbate existing inequalities. Ultimately, fostering fairness in AI-
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based credit decision-making is not only a matter of compliance or performance-it is central to building systems that are trustworthy,
inclusive, and aligned with broader goals of financial equity and social justice in an increasingly automated world.
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Abstract

Lung disorders are a major global health issue. A quick and accurate diagnosis is essential for proper
treatment. In order to increase diagnostic accuracy, recent multimodal techniques are gaining popularity.
This study carried out a comprehensive analysis of research articles on multimodal approaches that were
published between 2020 and 2024 in Scopus and Google Scholar. The results show that there is limited
study on the multimodal approach and on a variety of lung disorders such as asthma, TB, pneumonia, and
chronic obstructive pulmonary disease. Several studies concentrated mainly on the detection and binary
classification of COVID-19. The field has several challenges, including limited datasets, high computing
costs, difficulties in integrating multiple modalities, and lack of accessibility of the models. Future studies
should look at a wider range of lung diseases, increase the accessibility of datasets, improve fusion methods
for merging data from many sources, and create models that are easier to understand and use fewer
resources. Resolving these issues will improve patient outcomes by advancing the real-world use of deep
learning in medical diagnosis.

Keywords: deep learning, multimodal approach, lung diseases, medical imaging, lung sounds, regression, classification, diag-
nostics.

I. INTRODUCTION

The respiratory system plays a crucial role in the human body, facilitating the exchange of oxygen and carbon dioxide [1].
Despite its flexibility, it remains at risk for numerous diseases that can significantly affect lung function and overall human health.
Lung diseases cover a broad category of disorders such as pneumonia, tuberculosis, chronic obstructive pulmonary disease, and lung
cancer, among others. These diseases are a major cause of morbidity and mortality on a global scale [2].

The World Health Organization informs that in 2019 around 3.23 million victims were COPD. In the same year, it was reported
that chronic respiratory diseases were responsible for 4 million deaths overall. In the United States, asthma affects more than 23.3
million adults and 6.6% children, resulting in significant treatment costs and reduced quality of life [3]–[5]. Furthermore, in 2024
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Kazakhstan had one of the highest rates of lung disorders globally [6]. These statistics highlight the impact of lung diseases on
global health and the need for better diagnostic methods that can quickly and accurately identify diseases.

Traditional methods for diagnosing lung disease are medical history reviews, blood tests, lung sound, chest X-rays, and CT scans,
etc. [7]. However, these methods have their own drawbacks, such as the dependence on expert analysis and limited accessibility
in the environment. Sometimes, these methods can be the cause of human error. That is why manual checking and image-based
analysis emphasize the need for more automated and standardized diagnostic processes [8], [9].

Nowadays deep learning has become a solution for these issues, providing precise and automatic diagnostic skills. Due to the
increasing availability of medical imaging and acoustic data, researchers have created deep learning algorithms that can accurately
identify lung problems [10]. In order to identify diseases, these models have shown remarkable success in evaluating lung sound
recordings, CT scans, and chest X-rays. Notable developments include the application of Recurrent Neural Network for lung sound
analysis and Convolutional Neural Network for image based classification. For instance, Çallı et al. emphasized the efficacy of deep
learning models like VGGNet and ResNet in chest X-ray processing, Ahmed et al. investigated CNN based architectures for lung
disease identification using chest imaging [11], [12]. Likewise, Sfayyih et al. examined the function of acoustic signal analysis in
identifying lung diseases, stressing the significance of CNN models based on spectrograms [13].

Kieu et al. examined 98 research from 2016 to 2020. They presented a taxonomy that included ensemble techniques, algorithms,
transfer learning, augmentation, and features. Large image sizes, a lack of publicly available datasets, data imbalance, and significant
error correlation in ensemble models are some of the main issues noted. In order to overcome these problems, the authors proposed
using cloud computing, different feature extraction, dataset sharing, and enhanced ensemble approaches. This survey article offers
insightful information, more research is necessary given recent developments in datasets and model designs [14]. AI based lung
sound categorization for the diagnosis of respiratory diseases was reviewed by Wanasinghe et al., who highlighted developments in
deep learning models, data augmentation, feature extraction, and explainability. With fusion models reaching up to 98% accuracy,
CNN performed incredibly. However, several obstacles persist, such as the scarcity of datasets, the dependence on individual feature
representations, and the absence of explainable AI methodologies. Developing clinical support tools for real-world applications,
increasing model interpretability, and diversifying datasets should be the main goals of future research [9]. In their assessment of
deep learning-based acoustic analysis for lung disease diagnosis, Sfayyih et al. emphasized the expanding use of Deep Learning
Convolutional Neural Networks (DLCNNs) in the detection of obstructive lung diseases. There are no as many reviews on signal-
based lung disease detection as there once was. Although they show potential, DLCNNs need to be further validated through
extensive research. Data standardization, clinical acceptance, and enhancing diagnostic reliability should be the main areas of future
study to assist industry applications and medical practitioners [13].

Despite these developments, most of the other research has focused on single-modal strategies that leverage acoustic analysis,
medical imaging, or other discrete data sources. Deep learning techniques for lung illness diagnosis have been evaluated in a variety
of survey publications, these researchers mainly focus on single-method approaches such as respiratory sound categorization or
CNN-based medical imaging analysis or other types of data [15]. On the other hand, diagnosing lung disease usually requires a
variety of clinical data sources, such as the patient’s medical history, symptoms, and other relevant information. The multimodal
approach can improve diagnostic accuracy, reduce biases, and increase predictability by integrating multiple data sources [15]. And
this survey aims to close this gap by providing an overview of multimodal deep learning methods for diagnosing lung diseases. The
objectives include assessing the effectiveness of multimodal models, identifying challenges that retard the progression in this field,
and exploring solutions that can be implemented to improve model accessibility and performance in a variety of lung diseases.

The following sections present a detailed review of multimodal deep learning techniques. The second section describes the
strategy used to collect and examine the relevant literature, including research published in Russian, Kazakh, and English. The third
section outlines the fundamental steps needed for deep learning applications, including feature extraction, data preprocessing, model
training, and evaluation. The fourth section classifies current techniques and examines breakthroughs in this area. In conclusion, the
importance of deep learning in improving the diagnosis of lung diseases and the potential impact of multimodal approaches will be
addressed.

II. METHODOLOGY

This research uses a systematic process to identify and analyze recent work on the multimodal approach. The methodology
is divided into major steps that include the process of selecting the articles, the filtering process, and the analysis of the selected
articles. The research was carried out in the Scopus and Google Scholar databases, with an emphasis on Q1-ranked papers published
between 2020 and 2024. The research terms used were a combination of phrases such as ”deep learning”, ”detection”, ”lung disease”
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(including asthma, chronic obstructive pulmonary disease, COPD, lung cancer, tuberculosis, pneumonia, COVID-19) and with terms
like ”image”, ”audio”, and ”sound” to ensure that suitable research is obtained.

The selection process is summarized in Figure 1b. The initial search yielded 535 papers from Scopus and 550 from Google
Scholar. A filtering process was then applied to exclude duplicate records and retain only studies that explicitly utilized both image
and audio or sound data in a multimodal approach. This step reduced the selection to 47 studies. Further eligibility screening was
performed on the basis of predefined inclusion and exclusion criteria. The inclusion criteria required studies to focus on multimodal
deep learning models for lung disease detection, provide clear experimental results and evaluation metrics, be published in English,
Russian, or Kazakh and appear in peer-reviewed journals or conferences. Studies were excluded if they used only a single data
modality (either image or audio), covered diseases beyond the scope of this research, or lacked clear methodological details or
experimental validation.

Following this process, 22 articles were considered eligible for inclusion in the final survey. These selected studies provided
meaningful information on current trends and challenges of multimodal deep learning in lung disease detection. And the results of
recent studies are summarized in Table I to provide a better understanding of the different modalities and their uses in the diagnosis
of lung diseases.

Table I summarizes the various research studies that were analyzed in this survey, emphasizing the variety of modalities, datasets,
and neural network architectures that were used. This indicates the diversity of approaches currently being explored in the field of
lung disease diagnosis using multimodal deep learning techniques.

This methodology section included the selection of relevant studies, a filtering process was used to ensure that only multimodal
approaches were included, and the final set of studies was assessed using predefined criteria. The selected articles provide information
on current trends, challenges and advances in the integration of multiple data modalities for improved diagnostic accuracy.

III. FUNDAMENTAL STEPS IN APPLYING DEEP LEARNING FOR LUNG DISEASE DETECTION

Deep learning plays an essential role in the identification of lung diseases by analyzing medical images and patient data. The
process consists of four key steps, they are data collection, data preprocessing, training model, and prediction making [14]. The
overview of the process is illustrated at Figure 1b.

(a) (b)

Fig. 1: (a) The survey methodology, (b) Overview of using DL for lung disease detection
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TABLE I: Summary of multimodal deep learning approaches for lung disease diagnosis

Study Modality Datasets Used Neural Network Architecture Key Results
Kumar et al.,
2023 [18]

img + text Manually collected (289
patients, future 65k
records)

DenseNet121, ResNet50,
LSTM, SVM fusion

Intermediate fusion
improved accuracy by
2.9%

Malik et al.,
2024 [19]

img + audio 24 public datasets (CXR,
Cough sound, RSNA, etc.)

CNN + BANL, RBAP, MWDG Achieved SOTA
performance across diseases

Kumar et al.,
2024 [20]

img + text 3,256 patient records (In-
dia)

CNN, Denoising Autoencoder,
Cross-Modal Transformer

Addressed data imbalance,
high accuracy for TB classi-
fication

Abhishek
et al., 2024
[21]

img + audio 1,979 respiratory sound
recordings

Hybrid CNN-GRU model High accuracy in common
respiratory diseases, overfit-
ting risk

Sangeetha
et al., 2024
[22]

img + text TCIA, TCGA MFDNN, CNN, DNN, Interme-
diate Fusion

92.5% accuracy in lung can-
cer classification

Varunkumar
et al., 2024
[23]

img + img RIDER Lung CT, Kaggle
X-ray

CNN with dilated convolutions,
multimodal fusion

Limited dataset diversity,
generalizability issues

Hamdi et al.,
2021 [24]

img + text Public IPF dataset (33,026
CT + 1,549 records)

EfficientNet, DenseNet, LSTM,
Attention Fusion

Multimodal integration im-
proved prediction accuracy

Kumar et al.,
2024 [25]

img + audio +
text

AIIMS, Raipur (CT, X-
ray, cough, lung sounds)

EfficientNet, RNN, U-Net,
OpenL3, RVFL neuro-fuzzy
model

COPD prediction using mul-
timodal fusion

Deng et al.,
2024 [35]

img + text East China hospitals, Kag-
gle COVID-19 CT

CNN + Contrastive Learning +
Early Fusion

Contrastive learning
improved performance,
Grad-CAM interpretation

Adeshina
et al., 2022
[26]

img + audio COVIDx, SARS-CoV-2
CT-scan dataset

CNN, ResNet, DenseNet,
XResNet, Self-Attention

91.07% accuracy, effective
multimodal cascaded
approach

Thandu et
al., 2024
[27]

img + audio Chest X-ray (COVID-
19 Radiography) +
COUGHVID

DSPANN + Blockchain-based
Privacy (ECHFA)

Data quality challenges,
complex attention
mechanisms

Liu et al.,
2024 [28]

img + text 4 hospitals (China), Chest
CT, Clinical Features

DenseNet-201 + DNNs + Early
Fusion

Outperformed junior radiolo-
gists, 11 key clinical features
identified

Farhan et al.,
2023 [29]

img + img CXRTD, PCXRA, CCSC,
NIH Chest X-ray

CNN, LSTM, SVM, Decision
Tree

Improved severity grading
performance

Lay et al.,
2022 [30]

img + text Shenzhen, Montgomery
X-ray Dataset

EfficientNet, XGBoost, U-Net AUC improved by 0.0213
over unimodal models

Mayya et al.,
2021 [36]

img + text COVID-19 Chest X-ray,
RSNA Pneumonia Dataset

ResNet18, NLP, Grad-CAM,
Deep NN Ensemble

X-ray + diagnosis reports en-
hanced accuracy

Wu et al.,
2021 [31]

img + text TCIA (422 NSCLC pa-
tients)

3D-ResNet, Clinical Embed-
ding Layer, Fusion

Improved survival prediction
using multimodal fusion
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A. Dataset Collection and Data Preprocessing
When collecting data, data can be in the form of chest X-rays, CT scans, medical records of patients, coughing, and breathing

sounds [10], [11]. Researchers choose between public medical databases or manually acquire data from hospitals and clinics. To
ensure that the model can identify a wide variety of lung disorders, balanced data are crucial. Once data is collected, they are
processed to make them clean and ready for use. This includes eliminating noise, improving image quality, and being standardized
in terms of size and format. In medical imaging, pre-processing can be in altering contrast, segmentation of lung regions, and removal
of extraneous detail. In non-image data, such as patient symptoms or audio, pre-processing can be used to structure information in
a well-defined format. The purpose of this step is to clean the data so that the model learns only meaningful patterns [33].

B. Training the Model and Prediction
Before the training step, the model gets a large number of labeled samples to be able to understand its features and patterns of

lung diseases. Researchers can use neural network architectures that are appropriate for medical image and sound analysis. During
training time, the model continuously changes its internal parameters so that it can better identify diseases. A well-trained model
predicts the results of the new data. After being trained, the model is tested with new images or patient data to verify its performance.
When given a new X-ray or CT scan, the model makes a decision about whether a patient is healthy or has a specific lung disease
[14]. Certain models also give us a probability score that informs us about how certain or confident the model is in its decision.
This method can help physicians diagnose patients more quickly and accurately when it is integrated into a clinical workflow.

IV. TAXONOMY AND TRENDS IN MULTIMODAL APPROACHES FOR LUNG DISEASE DIAGNOSIS

This section shows the taxonomy and trends in multimodal approaches to the diagnosis of lung diseases. Modalities, feature
engineering, data augmentation, fusion techniques, illness categories, and output types are the six key qualities into which the
taxonomy groups the important methodologies used in recent studies. These attributes describe the methods of data acquisition,
feature extraction, model enhancement, and prediction. These attributes are discussed in detail in subsections A to B, along with a
study of the corresponding research.

A. Modalities type
Lung disease detection using deep learning is based on various data modalities, often combining multiple sources for better

accuracy. Figure 2a shows that some studies use only medical images, such as CT, X-rays, and PET scans, to identify lung
abnormalities [29], [33]. Others improve detection by integrating images with respiratory or cough sounds, capturing both structural
and acoustic patterns [15], [19], [21], [26], [27], [33], [37], [38]. Another approach combines images with clinical records, including
patient demographics, diagnostic reports, and lab results, providing additional diagnostic context [18], [20], [22], [24], [28], [30],
[31], [35], [36]. Studies using image and audio data focus primarily on COVID-19, pneumonia, tuberculosis, lung cancer, asthma,
and COPD, while image and text combinations are commonly applied to lung cancer, tuberculosis, chronic bronchitis, and pulmonary
fibrosis. Some research incorporates the three modalities: images, audio, and text, to improve disease prediction, particularly for
COVID-19, COPD, and other complex respiratory conditions [17], [25], [32]. The choice of modality depends on the characteristics
of the disease and the available diagnostic data, with multimodal approaches enhancing the accuracy of classification.

B. Feature engineering
Feature engineering is essential for the diagnosis of multimodal lung disease because it has a direct impact on the way deep

learning models extract relevant representations from medical data. Handcrafted features and learned features are two main categories
into which feature engineering methodologies can be divided. Medical pictures and audio data are manually processed to extract
hand-crafted features based on domain-specific knowledge. Texture descriptors, shape characteristics, and statistical qualities are
frequently used in imaging modalities, whereas Mel frequency cepstral coefficients (MFCC) and spectrum features are frequently
used in audio-based diagnostics. On the other hand, deep learning models, in particular, Convolutional Neural Networks, which
are suited to recognizing complex patterns in unstructured information without the need for explicit feature selection automatically
extract learned features. Using pre-trained architectures like VGG19, Inception-v3, ResNet, DenseNet, and EfficientNet to increase
feature extraction and classification performance, transfer learning has been widely used in recent research. These models are refined
on lung disease datasets to extract high-level features relevant to illness detection after being pre-trained on vast datasets. In order

Received: March 10, 2025. Reviewed: March 18, 2025. Accepted: March 20, 2025. © 2025 Zhaniya Medeuova. All rights
reserved.



23 Journal of Emerging Technologies and Computing (JETC), Vol. 1 No. 1 (2025)

(a) (b)

Fig. 2: (a) Distribution of Modalities, (b) Fusion techniques over time

to minimize dimensionality and maintain the most discriminative features, some research incorporates feature selection methods
such as principal component analysis (PCA) and recursive feature elimination (RFE) in addition to feature extraction based on
deep learning [18], [22]. This improves the performance of the model. Furthermore, hybrid techniques that integrate learned and
handcrafted features have attracted a lot of interest since they allow for a more thorough representation of multimodal data, which
eventually improves diagnostic adaptability and accuracy. Multimodal approaches can improve lung disease detection by using these
feature engineering techniques to capture high- and low-level data representations, which will improve prediction performance.

C. Data augmentation
Deep learning-based lung disease identification often employs data augmentation to improve model generalization and address

data limitation. Rotation, scaling, translation, flipping, contrast alterations, and noise injection are popular augmentation procedures in
medical imaging. For specialization on lung regions, some investigations use segmentation-based augmentations such as cropping and
scaling. Furthermore, image quality is enhanced by preprocessing techniques such contrast limited adaptive histogram equalization
(CLAHE) and histogram matching [36]. Using pitch shifting, temporal stretching, noise injection, and speed perturbation, aug-
mentation techniques alter respiratory sounds for audio-based classification [33]. These techniques help models adjust to changes
in recording conditions and sound quality. Furthermore, by increasing the representation of imbalanced classes, data balancing
techniques such as MWDG (Multiple-Way Data Generation) and SMOTE (Synthetic Minority Oversampling Technique) reduce
model bias [19]. Horizontal flipping, rotation, and width/height shifts are used in public datasets such as POCOVID-Net and NIH
Chest X-Ray, in addition to preprocessing techniques such as CLAHE and scaling. Principal component analysis (PCA), image
embedding, clustering for defect detection, and Fourier transform are the complex augmentation methods. They are frequently used
in manually collected datasets. Preprocessing techniques such as wavelet transformations, noise reduction, and Mel frequency cepstral
coefficients (MFCC) improve the accuracy in audio samples [37]. Augmentation has drawbacks despite its benefits. Unrealistic data
produced by excessive changes can result in poor model generalization [37]. Complex procedures raise computing costs, and improper
augmentation strategies could result in biases. Additionally, broad, high-quality real-world data is still necessary for developing a
strong and reliable deep learning model, and augmentation cannot completely replace it.

D. Fusion techniques
In order to improve the quality and strength of computational models, fusion techniques are essential for combining various

data sources. Figure 2b shows that several fusion strategies have been used, such as early fusion (E), intermediate fusion (I),
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and late fusion (L), according to the reviewed publications. The method by which and when the data is joined during processing
differ in these methods, which affects model performance and computing efficiency. With 10 experiments, intermediate fusion
was the most commonly utilized strategy among the 22 papers surveyed [17], [20]–[24], [27], [29], [33]. Before making a final
judgment, features that have been retrieved from several modalities or sources are combined using feature-level integration, which
is a common component of intermediate fusion approaches. The Progressive Split Deformable Field Fusion Module (PSDFM),
which uses intermediate fusion to improve representation learning, is a notable example [27]. Seven studies used early fusion (E),
suggesting a preference for input-level direct data integration [15], [19], [28], [31], [32], [35], [36]. This method is frequently used
in situations where it is possible to efficiently mix raw data from many sources prior to feature extraction. Four articles reported
the use of late fusion (L), which combines predictions from different models and is frequently used in ensemble-based techniques
to increase the accuracy of regression or classification [25], [30], [37]. The flexibility of fusion techniques in complicated problem
domains was demonstrated by certain papers that used a combination of fusion procedures, such as L, I and E, I [18], [26].

However, a study specifically mentioned the lack of fusion techniques, implying that independent processing of data sources would
be better in some circumstances. The performance of the model is significantly affected by the fusion technique method. Intermediate
fusion often outperforms early and late fusion because it allows feature representations from multiple modalities to be refined before
final decision making, leading to more discriminative patterns. However, it can be challenging to compute [26]. On the other hand,
early fusion ensures that raw data is combined before feature extraction, which can be valuable when different modalities share
a common feature space but may struggle with heterogeneous data [18]. Late fusion provides flexibility by allowing independent
model predictions to be combined, but may not fully leverage interactions between different data sources. The effectiveness of
each method depends on factors such as data heterogeneity, model complexity, and available computational resources. Studies have
shown that hybrid approaches, such as the combination of early and intermediate fusion, can further improve performance utilizing
data-level and feature-level integration [26].

In general, fusion methods are still being developed, and hybrid fusion models which use several levels of integration to optimize
the advantages of various data sources are becoming progressively more popular. Future studies might concentrate on refining fusion
techniques to strike a balance between prediction performance and computational economy across a range of application domains.

E. Disease types
The reviewed studies cover a broad spectrum of lung diseases, demonstrating the extensive application of computational models

in clinical diagnosis. As shown in Figure 3b, COVID-19 was the most frequently occurring disease to be examined, occurring in nine
studies, reaffirming its persistent relevance in clinical imaging [15], [17], [26], [27], [32], [36], [38]. Pneumonia was also a significant
area of research, studies of its various forms, including bacterial, viral, lobar, lobular, and Staphylococcus aureus pneumonia (SAP)
demonstrating the need for precise diagnostic models [15], [17]–[19]. Tuberculosis (TB) has also been explored frequently, with
particular studies differentiating pulmonary TB [15], [19], [20], [37]. Other respiratory infections including bronchitis, lower and
upper respiratory tract infections (LRTI, URTI), and bronchiolitis were also explored [37]. Chronic lung diseases sush as Chronic
Obstructive Pulmonary Disease (COPD), asthma, and chronic bronchitis were also extensively explored, with the need for early
diagnosis and long-term monitoring [25]. Lung cancer, particularly non-small cell lung cancer (NSCLC), was also a significant area
of research in various studies [15], [19], [22]. Some studies also explored relatively uncommon but clinically important conditions
including Idiopathic Pulmonary Fibrosis (IPF), pleural effusion, and pulmonary edema [24].

The studies used publicly available datasets or manually collected data. Most of the research used publicly available datasets,
ensuring standardized imaging data for training and evaluation. However, some studies included manually collected datasets from
hospitals and medical institutions, especially for diseases that are underrepresented in publicly available data [17], [18], [20], [21],
[32], [35]–[37]. According to Table 1, ChestX-ray14, COVIDx, Tuberculosis Chest X-ray, RSNA Pneumonia Detection Challenge
Dataset, and LIDC-IDRI are the public datasets most commonly used. Large-scale model training was made possible by these datasets,
which offered categorized medical imaging data, eliminating the need for manual collection. A smaller number of studies applied
datasets that were manually collected, mostly from imaging facilities and hospital records. For rare disorders where public datasets
were not enough, such as pleural effusion, pulmonary fibrosis, or mixed-disease classification tasks, these datasets were especially
valuable. In comparison to publicly available datasets, personally gathered datasets frequently have smaller sample numbers, but
provide greater control over patient demographics and imaging conditions.

Large-scale model training is made easier by publicly accessible datasets, but these datasets frequently contain biases that may
hinder the generalizability and performance of the models. Ethnic representation is an important issue. There is a lack of diversity
in many large scale datasets, like ChestX-ray14 and COVIDx, because most of the images are taken from particular populations
[36]. Because of this, models developed using these datasets might not work consistently across ethnic groups, which could reduce
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the diagnostic accuracy for underrepresented groups. The distribution of ages is also a significant factor. Adult and elderly patients
make up a larger percentage of many datasets, while young children are still underrepresented. For diseases like pneumonia and
bronchiolitis, which occur differently in children than in adults, this can present difficulties. Models may perform less well in
predicting outcomes for younger patients if they are not trained in a balanced age distribution. In addition, a common limitation is
an imbalance in the severity of the disease. Since severe cases are more commonly diagnosed and documented in medical settings,
they often make up a larger percentage of public datasets. This makes early stage diagnosis more challenging by biasing model
training toward identifying diseases at a later stage. Early detection, which is essential for prompt medical intervention, may be
difficult for models trained on unbalanced datasets.

The range of diseases covered in these studies highlights the need for strong deep learning models capable of addressing a
variety of lung conditions. To improve predictability, future research may focus on improving classification performance in a range
of diseases and ensuring that datasets incorporate world differences. Curating datasets that more accurately reflect a range of age
groups, disease severity levels, and populations should be the main goal.

(a) (b)

Fig. 3: (a) Distribution of output types in lung disease diagnosis studies, (b) Distribution of most studied
lung diseases in multimodal research

F. Output types
Various types of output were used in the investigated research. Figure 3a shows that the three main types of these outputs were

probabilistic estimation, regression based prediction, and classification. Classification tasks, especially binary classification, were a
popular type among reviewed articles [18], [20], [22], [23], [25], [26], [28], [30], [32], [35], [36], [38]. A unique case was when
a model was categorized according to severity levels rather than type of disease, including mild, moderate, severe, and deadly
[29]. Also in regression models used to estimate patient disease severity. Using metrics like the MAE and Concordance Index to
estimate survival time for patients with non-small cell lung cancer. Regression based methods were also employed to monitor the
severity of COPD and the development of idiopathic pulmonary fibrosis. Probabilistic outputs, which provide confidence scores for
the existence or severity levels of the diseases. In multiclass classification tasks, where probability distributions aided in improving
decision making in unclear situations, such methods were frequently used. These probabilistic outputs were frequently evaluated
using metrics like the Receiver Operating Characteristic (ROC) curve and the Area Under the Curve (AUC). The metrics used for
the evaluation were chosen based on the selection of the output type. F1-score, recall, specificity, accuracy, and precision were
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frequently used in binary classification models. Log Loss, Fowlkes-Mallows Index (FMI), and Matthews Correlation Coefficient
(MCC) were used in multiclass classification studies. Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), and R2 score were commonly used to evaluate regression models. It is crucial to use these metrics depending on
their strengths and limitations [14]. AUC-ROC and other performance metrics based on probability were commonly used to assess
probabilistic models. However, it does not capture data imbalances as well as the F1 score, MCC [34]. Both RMSE and MAE give
distinct viewpoints on prediction error in regression models, with RMSE penalizing larger errors progressively. The best evaluation
method for a task can be chosen with the help of a structured comparison of these metrics. The comparative analysis presented in
Table II underscores the importance of understanding the strengths and limitations inherent in different models, highlighting areas
that require further exploration.

TABLE II: Comparison of multimodal models: strengths, weaknesses, and metrics

Study Strengths Weaknesses Evaluation Metrics
Kumar et al.,
2023 [18]

Adaptive batch sizes, effective multi-
modal fusion

Small dataset, data quality issues Accuracy, Precision,
F1 Score

Malik et al.,
2024 [19]

Early fusion, data augmentation Data imbalance, high computational
cost

Accuracy (99.01%),
MCC, FMI

Kumar et al.,
2024 [20]

Cross-modal attention, effective fusion Small dataset, high computational cost Accuracy (95%),
AUC-ROC, MCC

Abhishek et
al., 2024 [21]

Robust feature extraction, real-time
processing

Limited class diversity, noisy data Accuracy (98%),
AUC, F1 Score

Sangeetha et
al., 2024 [22]

Improved accuracy, effective feature ex-
traction

Privacy concerns, AI interpretability Accuracy (92.5%),
Precision, Recall

Varunkumar et
al., 2024 [23]

CNN for feature extraction, hierarchical
fusion

Lack of diverse datasets, model inter-
pretability

Accuracy (94%), F1
Score

Hamdi et al.,
2021 [24]

CNN+LSTM fusion, attention mecha-
nism

Lung segmentation noise, training com-
plexity

Accuracy (97%), R²
Score (91%)

Deng et al.,
2024 [35]

Hierarchical fine-tuning, contrastive
learning

Small dataset, overfitting risk Accuracy (90.14%),
F1 Score

Adeshina et
al., 2022 [26]

End-to-end training, self-attention. Dis-
criminative fine-tuning.

Complexity in training models. Sensi-
tivity to hyperparameter tuning.

Accuracy (91.26%),
XResNet

Thandu et al.,
2024 [27]

Uses multimodal data fusion, achieves
high diagnostic accuracy, blockchain
for privacy

Scalability, interpretability Accuracy (98%),
AUC (97%)

Liu et al., 2024
[28]

Early fusion, transfer learning Small sample size, imbalance AUC (0.92), Accu-
racy (78%)

Farhan et al.,
2023 [29]

CNN+handcrafted features, optimized
CNN

Class imbalance, long training times Accuracy (98.78%),
F1 Score

Lay et al.,
2022 [30]

Demographic data fusion, late fusion Small dataset, generalization issues AUC (0.9574)

Mayya et al.,
2021 [36]

Feedback mechanism, Grad-CAM in-
terpretability

Limited dataset, X-ray variability Accuracy (97%)

Wu et al., 2021
[31]

3D-ResNet, batch normalization Data variety issues, complex survival
model

MAE (0.162), C-
index (0.6580)

The reviewed studies highlight a growing trend toward the integration of multiple modalities, advanced feature engineering,
and data fusion techniques to improve diagnostic accuracy. The taxonomy reveals that the majority of approaches rely on deep
learning, leveraging handcrafted and learned features to optimize performance. Intermediate fusion emerges as the most effective
method, striking a balance between enhanced representation learning and computational efficiency. Additionally, publicly available
datasets remain the primary source for training models, despite concerns about data diversity. Upcoming advancements should focus
on improving fusion techniques, guaranteeing dataset inclusivity, and resolving feature selection issues to increase the diagnostic
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accuracy for a wider variety of lung conditions.

V. CONCLUSION

This study investigated the application of deep learning to identify lung diseases by merging various data sets, including lung
sounds and medical imaging. Studies show that, in contrast to the use of a single data type, multimodal techniques can increase
diagnostic accuracy. But there are still a number of difficulties. The lack of studies that examine a broad spectrum of lung disorders
is a major problem. Instead of classifying several lung diseases such as asthma, TB, pneumonia, and chronic obstructive pulmonary
disease (COPD), the majority of current research concentrates on the detection or binary classification of COVID-19. This restricts
how these models can be used in the real world. The difficulty of combining several data types in a way that improves model
performance is another significant obstacle. Large, high-quality datasets are also necessary for deep learning models. However, there
are not enough publicly accessible multimodal datasets that cover a range of lung disorders.

Furthermore, doctors find it difficult to believe the predictions made by AI models because they are sometimes complex and
difficult to understand. The adoption of these techniques in hospitals with limited resources is further hampered by their high
computing costs. It is essential to expand the focus of future studies to include lung conditions other than COVID-19. Improving
techniques to efficiently integrate clinical, audio, and visual information can improve diagnosis. Creating larger and more balanced
databases with a variety of disease categories should be another priority for researchers. Creating models that can operate with
smaller datasets and reduce dependence on enormous amounts of labeled data is another crucial avenue. Enhancing transparency
and explainability will contribute to a rise in medical professionals’ trust. Lastly, to ensure that these complex algorithms can be
applied successfully in actual medical situations, cooperation between AI researchers and healthcare professionals is essential. Deep
learning can significantly improve early diagnosis and treatment for a variety of lung diseases by addressing these issues, ultimately
improving patient outcomes.
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//qazaqstan.tv/news/203518/.

[7] K. Bartziokas, A. Papaporfyriou, G. Hillas, A. Papaioannou, and S. Loukides, ”Global Initiative for Chronic Obstructive Lung
Disease (GOLD) Recommendations: Strengths and Concerns for Future Needs,” Postgraduate Medicine, vol. 135, 2022. DOI:
10.1080/00325481.2022.2135893.

[8] J. P. Allinson, N. Chaturvedi, A. Wong, I. Shah, G. C. Donaldson, J. A. Wedzicha, and R. Hardy, ”Early Childhood Lower
Respiratory Tract Infection and Premature Adult Death from Respiratory Disease in Great Britain: A National Birth Cohort
Study,” Lancet (London, England), vol. 401, no. 10383, pp. 1183–1193, 2023. DOI: 10.1016/S0140-6736(23)00131-9.

[9] T. Wanasinghe, S. Bandara, S. Madusanka, D. Meedeniya, M. Bandara, and I. De la Torre Dı́ez, ”Lung Sound Classification for
Respiratory Disease Identification Using Deep Learning: A Survey,” International Journal of Online and Biomedical Engineering
(iJOE), vol. 20, pp. 1-15, 2024. DOI: 10.3991/ijoe.v20i10.49585.

[10] A. Ijaz, M. Nabeel, U. Masood, T. Mahmood, M. S. Hashmi, I. Posokhova, A. Rizwan, and A. Imran, ”Towards Using Cough
for Respiratory Disease Diagnosis by Leveraging Artificial Intelligence: A Survey,” Informatics in Medicine Unlocked, vol.
29, p. 100832, 2022. DOI: 10.1016/j.imu.2021.100832.

Received: March 10, 2025. Reviewed: March 18, 2025. Accepted: March 20, 2025. © 2025 Zhaniya Medeuova. All rights
reserved.

https://doi.org/10.1109/ICOIACT59844.2023.10455864
https://doi.org/10.1155/2023/3563696
https://doi.org/10.1016/j.eclinm.2023.101936
https://doi.org/10.1016/j.eclinm.2023.101936
https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
https://doi.org/10.1109/TII.2021.3098010
https://qazaqstan.tv/news/203518/
https://qazaqstan.tv/news/203518/
https://doi.org/10.1080/00325481.2022.2135893
https://doi.org/10.1080/00325481.2022.2135893
https://doi.org/10.1016/S0140-6736(23)00131-9
https://doi.org/10.3991/ijoe.v20i10.49585
https://doi.org/10.1016/j.imu.2021.100832


28 Journal of Emerging Technologies and Computing (JETC), Vol. 1 No. 1 (2025)

[11] S. Ahmed and S. Kadhem, ”Using Machine Learning via Deep Learning Algorithms to Diagnose the Lung Disease Based
on Chest Imaging: A Survey,” International Journal of Interactive Mobile Technologies (iJIM), vol. 15, p. 95, 2021. DOI:
10.3991/ijim.v15i16.24191.
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Abstract

The study introduces a new strategy for the analysis of kidney disease parameters based on fuzzy logic.
Fuzzy logic is a more accurate way to categorize clinical parameters than statistical analysis because there
is uncertainty and variability in medical data. The data is comprised of an extensive amount of clinical
parameters including age, blood pressure, specific gravity, albumin, sugar, random blood glucose, blood
urea, serum creatinine, sodium, potassium, hemoglobin, packed cell volume, white blood cell count, and
red blood cell count.

The methodology utilizes fuzzy logic centroid computation to categorize these parameters into low,
medium, and high levels to provide a more dynamic and interpretable assessment of renal health. Fuzzy
memberships give the current work the capability to discover intricate interrelationships between clinical
variables, which may have been otherwise unattainable by conventional mean, median, and standard
deviation-based analyses.

The findings confirm that fuzzy logic and conventional statistical methods enhance the comprehension
of kidney disease by incorporating intricate interactions between clinical variables. The method is employed
to achieve more accurate prediction and diagnostic models, offering insight to be used in kidney disease
assessment and medical decisions.
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I. INTRODUCTION

Kidney disease is a global health problem, and it is found in millions of patients all over the globe, causing morbidity and
death in populations all over the world [1]–[3]. The blood pressure, age, and biochemical markers’ correlation is most important to
establish the kidney’s health status. Statistical measures have their applications, but they cannot reflect the natural uncertainty and
subtlety in medical data.

The current work introduces a new methodology based on fuzzy logic analysis to separate the complex interaction between
disease-related parameters. Fuzzy logic is particularly appropriate to work with imprecise and incomplete data and therefore is a
perfect tool to unveil hidden trends, which may not be visible to traditional statistical analysis. With the increasing prevalence of
chronic kidney disease, an early and accurate diagnosis is critical to successful management. In response, exploring new analysis
methods is relevant to increase diagnostic accuracy and direct clinical decision.

The final goal of the study is to obtain fuzzy membership functions and centroids to quantify and describe trends in the variables of
kidney disease. With the application of fuzzy logic to traditional descriptive statistics, we will have a more meaningful understanding
of the shape and distribution of the variables, and a better understanding of kidney health.

Fuzzy logic is applied across various fields because of its ability to deal with uncertainty and imprecise values. In control systems,
it is applied on a large scale to increase accuracy and flexibility and provide more powerful solutions compared to traditional binary
logic [4]–[7]. Fuzzy logic is applied in the automotive industry to improve vehicle stability, fuel efficiency, and performance. Fuzzy
logic is applied in medicine to simulate diagnostic neurological and cardiovascular diseases [8]–[11]. Fuzzy logic is applied to
assist in financial modeling by dealing with uncertainty in the market, improving risk analysis, and improving investment decisions
[12]–[14].

The paper examines a 2019 Chronic Kidney Disease data set [15] with key kidney-related variables. The study attempts to unravel
complex relations and trends by performing fuzzy logic analysis, and it opens a door to explore kidney disease development and
their major clinical implications.

The subsequent sections encapsulate the research strategy employed, key findings, and implications thereof for the development
of diagnostic tests and treatments exactly aimed at attacking kidney disease.

II. LITERATURE REVIEW

One of these fields that have been subjected to intense research by multiple computational approaches is kidney disease detection.
Authors in the article [16] have analyzed the serious issue of kidney failure, with an emphasis on slowing CKD progression and
minimizing economic burdens to treatments. They have based their work on risk factors causing kidney degeneration, with an
emphasis on conducting regular checks to determine risks before severe health decline.

Unlike other research that employed conventional statistical techniques, researchers [17] employed fuzzy and adaptive neural
fuzzy inference systems to diagnose CKD more precisely. They attempted to increase the reliability of medical tests to diagnose
disease. They considered important parameters such as nephron function, glucose, blood pressure, age, body mass index (BMI), and
smoking status in minute detail while creating a fuzzy inference system. Their system distinguished between CKD stages 1 to 5
and provided real-time results on the extent of the disease. Their fuzzy system was simulated with the assistance of MATLAB to
demonstrate how it can be employed in real-world healthcare applications.

One contribution to the study was by authors in [18], where they found natural imprecision in CKD detection in clinics. They
used a fuzzy inference system in MATLAB to correct the issue, based on the capability of fuzzy logic to handle uncertainty. Their
work, however, did not have a robust validation system, and there is a chance to enhance prediction accuracy.

In contrast to other studies, the current work is centered on the development of a more accurate fuzzy expert system (FES) from
a large dataset, clinical guidelines, and expert opinion to enhance CKD diagnosis.

This contribution is original in its application of systematic tests for normality to establish the input parameter effect and system
performance assessment by exhaustive testing. Surface analysis identified nephron function, blood sugar, and body mass index (BMI)
as the most accurate parameters to predict CKD. The FES was validated with 80 test cases, and the accuracy level was 93.75%,
confirming its feasibility in real-world applications.

Follow-up studies also reiterated the significance of CKD early detection. The authors in [19] and [20] employed deep learning
models to predict CKD, with satisfactory performance but requiring large training data and computational resources. Our study
bridges the gap by presenting an interpretable and computationally light alternative based on fuzzy logic.

The current work introduces a new prediction model based on the fuzzy logic toolbox in MATLAB to screen CKD. There are
five key steps in the process: (1) selection of key input parameters such as blood urea nitrogen, eGFR, and serum creatinine, (2)
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input-output relation normalization by carrying out min-max normalization, (3) construction of a fuzzy inference engine, (4) fuzzy
rule aggregation, and (5) defuzzification to obtain clear diagnostic outputs. 70 test cases from patients have been analyzed, and 47
have been diagnosed as CKD positive, which validated the reliability of the proposed model.

With the inclusion of results from past studies and enhancement of fuzzy logic-based techniques, the work is meant to enhance
diagnostic accuracy and achieve early detection of CKD. The study results demonstrate the potential of fuzzy expert systems to aid
clinical decision and enhance healthcare treatments.

III. METHODS

The study makes use of a range of data collected from (Chronic kidney disease data set, 2019), with differing parameters such
as age, blood pressure, specific gravity, albumin, sugar, random blood 5 glucose, blood urea, serum creatinine, sodium, potassium,
hemoglobin, packed cell volume, white cell count, and red cell count, and so on.

The dataset, formulated by merging two consecutive hospital reports, is an abstraction of one of the most important prediction
modeling indicators of chronic kidney disease (CKD). Since its multivariate set is heterogeneous, it is appropriate to use in
classification applications in health care and is important to use in order to gain insight into causality of chronic kidney disease.
The dataset comprises 25 attributes and 400 instances, all being of utmost relevance that will be used to contribute to prediction
modeling.

The set of data is composed of physiologic tests, clinical features, and lab values that describe a diverse set of conditions of the
patients. Key features include blood pressure (bp), specific gravity (sg), albumin (al), sugar (su), red cells (rbc), pus cells (pc), pus
cell clumps (pcc), bacteria (ba), random blood glucose (bgr), blood urea (bu), serum creatinine (sc), sodium (sod), potassium (pot),
hemoglobin (hemo), packed cell volume (pcv), white cell count (wc), red cell count (rc), and target feature (class) that describe
absence or presence of chronic kidney disease (CKD).

The wide range of features enables effective classification modeling and contributes to establishing causes of CKD. The compound
nature of the dataset makes it suitable to use within processes of machine learning of CKD or its initiation forecasting, enabling
possible better-timed effective treatments.

The following are processes that fall under fuzzy logic analysis:

• Variable selection. The most important identified variables were age, blood pressure, and biochemical markers. Fuzzy logic
is developed on top of these variables.

• Membership function generation. Membership functions corresponding to low, medium, and high levels of membership were
created using skfuzzy library for every identified variable. The functions give a pictorial representation of every range of
variables of the dataset.

• Centroid Calculation. For determination of numerical values of each level of each variable range, each of centroid, or centre
of gravity, of the membership function were computed

• Descriptive Statistics. For better understanding of the dataset, mean, median, and standard deviation were also calculated on
each of the variables.

Fig. 1 summarizes briefly the key steps followed to use fuzzy logic on parameters of renal disease, from preprocessed data
through fuzzification, inference system designing, defuzzification, to classification verification.

All processes are organized to adhere to a process of fuzzy logic that is implemented using clinical data guidelines.
The aim of merging fuzzy logic analysis into classical descriptive statistics is to have a complete understanding of complex

relationships among factors of renal disease. The outcomes of this process will provide valuable insight to practice, informing
practice and research of kidney health in the future.

IV. RESULTS AND DISCUSSION

Table 1 presents the fuzzy analysis of clinical attributes pertaining to kidney disease in low, medium, and high levels. This enhances
understanding by applying mean, median, and standard deviation to determine patterns of distribution, range, and variability in the
dataset. Fuzzy logic centroids provide more accurate classification of clinical attributes.

The fuzzy logic analysis of the centroids (low, medium, and high) provides a mean of around 51.48 years and a median of 55.00
years, showing a reasonably symmetric distribution. The standard deviation of 17.15 indicates a moderate spread in the distribution
of age, with a broad range of values.

Blood pressure classification shows that the mean (76.47) and median (80.00) are almost equal, which implies a symmetric
distribution. The standard deviation of 13.67 reflects moderate variation in blood pressure level between patients.
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Fig. 1: Flowchart summarizing the fuzzy logic-based methodology for kidney disease analysis

Specific gravity shows a clear distinction between centroids, with the low level being 1.01 and medium and high levels being
0.00. The close proximity between the mean and median and a standard deviation of 0.01 indicate homogeneity, which suggests
that values of specific gravity are comparatively consistent across levels of kidney disease.

The albumin values reflect a striking difference between the median (0) and the mean (1.02), indicating a skewed distribution.
The standard deviation of 1.35 reflects moderate variation in albumin values, an indication of variable degrees of kidney dysfunction
in the patients.

Red blood cell count reveals a closely similar mean (4.71) and median (4.8), indicating a near-symmetrical distribution. The
standard deviation of 1.02 indicates moderate variation, and it could reflect progression in anemia in patients with renal disease.

Other parameters, including blood glucose, blood urea, serum creatinine, sodium, potassium, hemoglobin, packed cell volume,
and white blood cell count, have varying degrees of skewness and spread. An example is blood glucose random levels, which have
a high standard deviation (79.17), indicating the great range in blood sugar levels between patients, an important aspect in the
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Fig. 2: Pseudocode of methodology

development of the disease. Similarly, serum creatinine is very variable (standard deviation 5.73), as is to be expected given that it
is a key indicator of renal function.

Clinical Implications. The statistical trends identified in the present study have important clinical implications. By classifying
clinical features into low, medium, and high levels based on fuzzy logic, medical professionals are able to:

• Improve Early Diagnosis. lassification of parameters such as blood pressure, albumin, and serum creatinine into levels enables
early-stage kidney disease to be diagnosed so that action can be taken in a timely fashion.

• Improve Patient Monitoring. Regular monitoring of blood urea, serum creatinine, and hemoglobin levels will help clinicians
monitor disease progression and adjust treatment regimens.

• Facilitate Personalized Treatment. With an understanding of the distribution and variation in important parameters, physicians
can individualize medication and diet recommendations to fit patient profiles.
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TABLE I: Summary of Experimental Results

Centroid Low Centroid Medium Centroid High Mean Median Std Dev
Age 18.5 47.82 76.49 51.48 55.00 17.15
Blood Pressure (bp) 158.83 102.15 144.82 76.47 80.00 13.67
Specific Gravity (sg) 1.01 0 0 1.02 1.02 0.01
Albumin (al) 10.35 1.88 3 1.02 0 1.35
Sugar (su) 0.33 1.88 2.77 0.45 0 1.1
Blood Glucose Random (bgr) 64.01 220.01 375.35 148.04 121.00 79.17
Blood Urea (bu) 120.14 149.98 279.48 57.43 42.00 50.44
Serum Creatinine (sc) 1.34 26.51 51.29 3.07 1.3 5.73
Sodium (sod) 48.84 101.67 154.18 137.53 138.00 10.39
Potassium (pot) 3.25 18.05 32.54 4.63 4.4 3.19
Hemoglobin (hemo) 6.26 11.1 15.54 12.53 12.65 2.91
Packed Cell Volume (pcv) 118.96 33.93 48.29 38.88 40.00 8.98
White Blood Cell Count (wc) 4268.71 12335.37 20401.37 8406.12 8000.00 2939.46
Red Blood Cell Count (rc) 3.03 4.83 6.24 4.71 4.8 1.02

A. Discussion
The fuzzy logic analysis provides a complete examination of the membership function and distribution characteristics of the

variables of kidney disease. Some of the observations and their potential implications are as follows:
Centroids for low, medium, and high membership levels in age indicate an even distribution across the range of the ages. This

is an indication that the dataset represents a range of ages, as is fitting to explore kidney health throughout all stages in one’s life.
The diversity enhances the capability of the dataset to give meaningful insights into risk factors based on kidney disease by age.

The distribution of blood pressure indicates a prevalent cluster in medium membership levels. This result indicates that the subjects
in the dataset have mostly moderate blood pressure, which may have an effect on kidney health. Additional studies are needed to
explore moderate blood pressure and outcomes in kidney disease. Specific gravity (sg) Anomalies: Specific gravity indicates an
abnormality, with centroids measured as 1.01 and 0.00, respectively, for low and medium and high membership levels. In spite of
these abnormalities, the median and the mean values are within expected ranges. This abnormality needs to be explored to establish
if there is an issue with the quality of data or to explore special features in the dataset.

Centroids for sugar and albumin indicate clear progression from low to high as would be clinically expected. Higher glucose and
albumin concentrations are typical to indicate renal impairment, and the distinctly clear fuzzy logic centroids indicate strong ability
to classify. The results provide a strong basis to determine risk levels for kidney disease. The blood glucose random values have
large variance, and their fuzzy logic centroids are dispersed across low, medium, and high membership values. This indicates strong
variance of blood glucose levels, underlining how important it is to account for renal function. The strong variance of distribution
underlines the necessity to carefully determine how renal function is influenced by blood glucose levels. The white cell count
centroids indicate a strong shift to higher counts, indicating varied immunological responses in sets. More intense observation of
correlation between immunological and renal functions could indicate important correlation with practice implications on managing
and predicting kidney disease. 9 The centroids of the red cell counts indicate symmetric count distribution across counts of low,
medium, and high values. The resulting homogeneity indicates balanced coverage of the counts of the red cells in sets, hence
eliminating sources of bias and providing reliability to corresponding analyses of other parameters of interest of a clinical nature.

The findings justify the use of fuzzy logic to establish complex relations in kidney disease data. The process ensures complete
classification of parameters of interest of a clinical type, hence better comprehension of complex determinants of renal function.
Future studies should continue to evolve based on findings to establish variable interactions and related practice implications. Finally,
correction of aberrations, as that of specific gravity, requires complete determination of related data to give reliability to subsequent
assessments.

V. CONCLUSION AND FUTURE WORK

Fuzzy modeling of clinical parameters adds a new dimension to kidney disease analysis, with more refined grouping of variables
as low, medium, and high. This grouping enables us to understand better how parameters influence kidney function. The addition of
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fuzzy logic centroids and traditional measures, such as mean, median, and standard deviation, provides a complete perspective on
variance and central tendency. The key findings are that parameters such as random blood glucose, blood urea, and serum creatinine
have high variance, and they can be potential markers in the progression of kidney disease.

Despite these advances, there are a few restrictions to this work. The dataset used may not capture all the variation present in
patient populations with diversity, and the fuzzy logic-based approach cannot account for potential non-linear interactions between
parameters. Additionally, the lack of direct comparison with conventional machine learning methods prevents assessment regarding
the relative performance of fuzzy logic in clinical decision support.

Future studies should integrate this fuzzy logic-based categorization into clinical decision support systems to assist medical
personnel in risk assessment and early diagnosis. Comparison to machine learning techniques, including decision trees, support
vector machines, and deep learning techniques, would provide more proof of efficacy. Larger dataset size and real-time patient
monitor data could also enhance the predictability of the model, adding to its utility in the clinical environment.
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Abstract

Early conflict detection in kindergartens plays a significant role in ensuring a harmonious learning
atmosphere and in promoting the social growth of young children. While most previous works have only
addressed conflict detection through adults, in this paper, we specifically address conflict detection in
kindergartens using deep learning, utilizing both spatial and temporal information to improve performance.
The application of deep learning and computer vision in automatically detecting and analyzing early
conflicts among young children is discussed in this paper. Using video footage, we leverage state-of-the-
art RNNs and 3D CNNs for high-accuracy detection of conflict instances. Crucial visual cues—facial
expressions, gestures, poses, vocal tone, and movement—are examined for the extraction of tension or
aggression signs. The model is evaluated on real kindergarten video data, with promising conflict detection
and classification results. The findings indicate the potential of AI-supported tools in assisting teachers in
class management, child behavior monitoring, early intervention mechanisms, and the fostering of a good
social environment.

Keywords: social conflict detection, deep learning, computer vision, kindergarten, child behavior analysis, pose estimation,
sentiment analysis, classroom monitoring, early childhood education, AI in education.

I. INTRODUCTION

Social links play an important role in the early childhood development, as they play a major role in the development of emotional
intelligence, communication skills, and conflict resolution [1]. Social conflict naturally occurs in kindergarten classrooms as children
learn to interact with their peers, work on social and behavioral norms, and participate in problem solving [2]. These child-versus-
group conflicts are a normal part of early socialization, but they necessitate careful management so they can contribute positively to
a child’s social and emotional development. Historically, teachers and childcare workers have used direct observation and subjective
sorting to identify and mediate conflicts. Nonetheless, classroom environments are highly dynamic and teachers often face time
constraints, making the early detection and timely intervention difficult [3]. This research presents a pioneering contribution to
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automatically detecting social conflict in educational settings through computer vision and deep learning methods presented in
October 2023. These technologies enable the real-time monitoring of children’s interactions, facilitating an immediate and objective
analysis of conflicts [4]. By utilizing these AI-driven systems, educators gain insights into behavioral patterns, which allows them to
create more effective intervention plans and improve classroom management. AI in early education not only improves identification
of conflict but also adds to the structured and data-oriented approach to child behavior. This research focuses on the analysis and
verification of deep learning models that can lead towards automatic detection and models of conflicts in preschool sessions [5] and
improve learning conditions for young children.

This study aims to devise and test an artificial intelligence (AI) system to identify conflicts of kindergarten children using computer
vision and deep learning techniques. It will be developed on the basis of recorded classroom interactions to discern conflict indicators
through gestures, facial expressions and vocal tone and body movements [6]. This article focuses on the investigation of behavioral
indicators across various time periods and learning settings, whilst also considering the effect of teacher interventions on conflict
resolution. By providing a comprehensive understanding of conflict dynamics, the findings from this study will guide educational
professionals in devising strategies for early dispute prevention, implementing judicious interventions, and enhancing the overall
educational experience. Moreover, this study takes into consideration the wider impact of AI on early childhood education by
suggesting technological advancements in monitoring social interactions, analyzing patterns of conduct, and refining the general
atmosphere of the classroom [7].

The research is organized around three key objectives to reach these goals. The first one deals with how we are going to collect
a large dataset of video data which contains the social conflicts of kindergarten boys and girls, where this dataset will be used
to train the CV system to detect the conflicts with deep learning technology in real time [8]. Second, it studies whether existing
models for fight detection are applicable to kindergarten receivers in such cases to see how effective and adaptable they would
be in settings where fights are more subtle and often non-violent [9]. At last, the goal of this research is to determine patterns of
repetitive behavior and causes of interactional conflicts in small children, therefore gaining insights into the socialisation process
of young children, and also laying the basis for the development of computational strategies to enhance early childhood education
through safe behavioural interventions using AI systems. In conclusion, this research aims to contribute to these important aspects in
order to help narrow down the gap between AI advances and the real-world classroom implementation of technology based conflict
resolution considering early childhood learning experiences.

II. LITERATURE REVIEW

The main issue when trying to detect social conflict in kindergartens by deep learning and computer vision is the room under
the assumption that children typically do not exhibit overt violence and that behavior would be very subtle. While adults’ conflict is
often realized in some evident physical violence, conflict between young children as manifested with social excluding or strife. This
necessitates making AI models for Early Childhood Contexts Although much of the earlier work has centered on adult violence or
violence more broadly, violence detection at school has shown the success of AI systems in observing aggressive conduct amongst
students [10]. Traditional mechanisms for conflict detection depend on the identification of hostile stances, loud voices, or fighting
in fact [11]. Such work may not translate easily to kindergarten, where violence is subtler and requires analysis at a finer behavioral
scale. This is true, especially since it departs from adult behavior analysis, but traditional methods based on direct detection of
aggressiveness are less suitable for identifying concealed violence in children.

However, recent advances in the fields of deep learning and computer vision have led to an automated conflict detection in
various domains, including security monitoring, child well-being, and education. Skeleton-based techniques have recently attained
high accuracy in determining aggressive action for pose estimation and motion analysis [12]. Likewise, sentiment analysis and
multimodal behavior recognition have also been utilized to recognize distress, frustration or aggressiveness in classrooms [13]. Deep
Learning has been applied in the detection of physical violence and child abuse in real-time using AI video surveillance systems
as well [14]. Social Conflict and Aggression Detection in Learning Environments Detects aggression and social conflict through a
series of methods, including pose estimation, facial expression recognition, and speech tone detection. Pose-based skeleton tracking
attained 83-92% accuracy for detecting aggressive behaviour [12]. Specific to facial expression recognition, 85-90% accuracy levels
were obtained in detecting children distress and frustration [13]. For example, accuracy levels of 80-88% were reached in detecting
distress from voice patterns in speech tone detection [11]. The most successful models utilized combinations of video, audio, and
behavior cues, achieving over 94% accuracy in a controlled experiment [14]. Even with all of these improvements, the use of AI
conflict detection in kindergarten classrooms presents a serious challenge. The major challenges are the variation in child behavior,
no big scale of labeled data and privacy/consent from parents etc. [15] Joint integration of spatial features (e.g., gestures, movement)
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and temporal features (e.g., speech tone, facial micro-expression patterns; [16]), has also shown great promises in terms of improving
accuracy and reliability in early education context.

AI solutions are capable of early intervention strategies, helping teachers cope with classroom behaviour, and creating a more
unified learning atmosphere by strengthening already existing methodologies, building them, and accounting for the unique nature
of kindergarten social dynamics.

A. Deep Learning for Conflict-detection
A considerable amount of this domain is using deep learning for analysis via video by in classifying violent or aggressive

behavior. The FightNet model which we introduced in Thao et al. In (2023), CNNs and RNNs are employed for spatio-temporal,
incidence in schools related to violence and fights. The method’s mean average precision (mAP) of 45.34% (IoU 0.5) was found
to be excellent on keypoint estimation and F1-score of 71.69% was also acceptable [10]. FightNet, however, had been primarily
trained on datasets of older students and adult subjects and therefore would have limited utility in discerning behavior of younger
children. Kindergarten conflicts [10] are based instead on gestures, bodily movement, or patterns of social exclusion rather than
direct bodily force and would therefore require early child behavior models specifically trained on those inputs. In similar work,
Imah and Karisma (2022) employed a deep transfer learning model, which used VGG16-LSTM for feature extraction and modeling
of time series with a G-mean of 0.911, indicating it a promising model for accurate sexual violence identification among children
[11]. This method had previously only mostly been built on subject datasets centered on more adults, as such limiting use for the
younger child, who can have milder bodily motion and more delicate social interplay in disputes.

B. Detection of Violence in Surveillance
The use of deep learning methods for detection of violence in surveillance systems has received considerable attention. For

example, Hughes and Kersten (2022) integrated Long Short-Term Memory (LSTM) networks with Convolutional Neural Networks
(CNNs) to improve detection accuracy to 77.9% on datasets like Hockey Fight and Movies Fight Detection Dataset [12]. Nevertheless,
their model was trained on mostly adult-based violent actions like punching and kicking, which are perhaps not representative of
kindergartens. Moreover, their model had a high false-positive rate with respect to its detection task, limiting its applications in
real-time monitoring. With dynamic classroom environments, excessive false alarms might trigger unnecessary interventions that
take away educators’ attention from real conflicts and potentially call into question the validity of AI-based surveillance systems.

C. Detecting Child Abuse and Distress
Specialized methods have also been investigated to detect signs of distress from children’s voices. Yan et al. (2023) exemplified

the use of deep CNNs in classifying child speech signals of distress with accuracy rates well over 90% based on MFCC and
spectrogram features [13]. This suggests the efficacy of auditory-based methods in sign detection. Nevertheless, these methods
might not capture the entire picture of a child’s well-being. Blending multimodal data with both auditory and visual cues can be
beneficial in building resilience and accuracy into the early conflict detection systems of children. This multimodal strategy conforms
to studies such as those conducted by Wu et al. (2015), who highlighted the significance of both spatial and temporal information
in video classification [14].

D. Multi-Modal Data Fusion for Improved Detection
Incorporating spatial and temporal information effectively is essential to support precise violence detection. Experiments have

demonstrated that one can combine CNNs with RNNs, e.g., LSTMs, to extract spatial information and capture temporal patterns
in video data. For example, in their work, Wu et al. (2015) developed a hybrid deep learning scheme that encodes static spatial
information, short-term motion information, and long-term temporal cues and obtains state-of-the-art results on benchmarks such
as UCF-101 and Columbia Consumer Videos (CCV) [14]. Implementing such approaches in preschool settings requires precise
attention to body language (spatial cues) and interaction sequencing (temporal cues) to detect social conflict in young children with
accuracy. Blending multimodal data that include both visual and auditory signals has the potential to improve detection and analysis
of faint conflict cues in early childhood settings.
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E. Effectiveness of AI in Educational Settings
These deep learning models, although powerful, present practical and ethical challenges when applied in real-world learning

environments. These challenges include maintaining data privacy, securing informed consent, and avoiding the encroachment of
automation on teacher-child relationships. Hughes and Kersten emphasize the concern of bias and over-reliance on automated
systems, detracting from human intuition [12]. And in particular, what schools need to think about when it comes to implementing
AI systems, certainly for vulnerable populations like young children.

While deep learning and other systems could be implemented in an educational environment, it is imperative that these decisions
be made with consideration of sending teachers directly to dispute management, as opposed to a turnturned recommendation engine.
Papadopoulos and Stavrakoudi compared human decision making and automation in several public security applications (e.g. violence
detection), stressing the need to keep this balance even in kindergarten context [15]. Research could be further developed to integrate
RNN, CNN, advanced temporal fusion techniques (such as slow fusion and multi-stream), to achieve behaviour classification in
complex preschool scenes. Moreover, the integration of pose estimation and sentiment analysis, as shown in crime detection models,
might be beneficial for recognizing subtle social signals, improving the real-time capabilities of the AI systems deployed for early
childhood education [16].

III. METHODS

The present work introduces a CNN-LSTM-3D CNN deep learning approach, customized to identify low-intensity conflict in
children and distinguish between playful behavior and aggression. The system uses Convolutional Neural Networks (CNN) to
learn the spatial features, and temporal relations in behavior patterns are learned by employing Long Short-Term Memory (LSTM)
networks. 3D CNN further processes spatiotemporal features in video streams to enhance conflict detection. The approach supports
teacher surveillance, detection of early signs of aggression, and establishment of a positive learning environment in kindergarten
classrooms.

A. Dataset Collection and Preprocessing
Video data were obtained in simulated kindergarten environments, capturing both conflict and non-conflict situations, including

play, cooperation, and conflicts. Data collection was conducted in accordance with participant anonymity and informed consent
guidelines. The resulting dataset consists of approximately 2,000 raw video clips, each lasting between 2 and 5 seconds, and is
evenly distributed across positive (conflict) and negative (non-conflict) classes, ensuring a balanced dataset. To enhance generalization,
data augmentation techniques such as rotation, brightness alteration, and flipping were applied during training, increasing the training
dataset to over 10,000 samples. However, validation was conducted using only raw, non-augmented videos to prevent performance
estimation bias. Importantly, the training and testing sets remained entirely separate, ensuring that there was no overlap between
the video samples used for training and testing, thus preventing data leakage and ensuring a balanced performance evaluation.
For preprocessing, the video frames were resized to 224×224, and key frames were extracted using scene detection to eliminate
redundancy. Since the data set consists of sequential video data, unnecessary augmentations were avoided to preserve the natural
flow of movement patterns.

Dataset Examples: Fight and No-Fight

The data set consists primarily of two categories: Conflict scenarios, such as physical fighting, verbal confrontation, hostile
body language, and social exclusion or manipulation; and Non-Conflict Scenarios, such as collaborative play, neutral dialogue, and
ordinary classroom phenomena. For instance, in a Conflict Scenario, students might be seen arguing vehemently over access to
resources; conversely, in a Non-Conflict Scenario, students might be seen collaborating harmoniously on a group task. Using labeled
frames to show the difference between ’fight’ versus ’no-fight’ situations, we are able to show all of the different scenarios which
can be represented within the dataset to be analyzed and models trained.

B. Evaluation of Existing Conflict Detection Systems
Before training dedicated models, general video-based conflict detection systems trained on typical video databases (i.e., sports

and surveillance) were evaluated on recorded kindergarten data. However, as these models are optimized for application in adult
behavior, they could not detect mild and non-violent conflicts characteristic in early-childhood behavior and confirmed the need for
a dedicated database and system design.
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Fig. 1. Example frame showing a no-fight situation Fig. 2. Example frame showing a fight situation

TABLE I
PERFORMANCE OF EXISTING MODELS ON KINDERGARTEN CONFLICT DETECTION

Model & Paper Methods Original Accuracy Performance on Kindergarten Data

FightNet (Le Quang Thao et al.,
2023)

CNN-RNN, keypoint estimation F1: 71.69% High false positives (34%) in playful interac-
tions.

Child Violence Detection (Imah
& Karisma, 2022)

VGG16-LSTM, deep transfer
learning

G-mean: 0.911 Moderate accuracy (68.2%), misclassified dis-
agreements.

Efficient Violence Detection
(Hughes & Kersten, 2022)

CNN-LSTM for video classifica-
tion

77.9% Poor adaptability (54.3%), struggled with
emotional intensity.

Child Abuse Detection (Yan et
al., 2023)

Deep CNNs, MFCCs, spectro-
gram analysis

90% (audio-based) Limited applicability, needed visual context.

Fighting Detection (Papadopou-
los & Stavrakoudi, 2024)

CNN-RNN-Attention ensemble 77.4%–95.7% Decent (72.1%), confused play with conflicts.

Existing violence detection models on kindergartens show significant drawbacks in their applicability in early childhood settings.
FightNet and Child Violence Detection models, with high effectiveness in the adult context, display high false positive rates and
moderate accuracy in applying to children’s communication and tend to label playful activities as violence. Efficient Violence
Detection and Fighting Detection models also show low adaptability and confusion between play and fighting, respectively. The
Child Abuse Detection model based on audio cues fails to capture the visual context required to interpret children’s actions effectively.
All these findings emphasize the importance of creating specialized models trained on child-specific datasets with the purpose of
maximizing accuracy and credibility in conflict detection in kindergartens.

C. Training Custom Conflict Detection Models
For better identification of social conflicts, we used and compared three architectures derived from deep learning: Features

extracted via a CNN were utilized as input for an LSTM network in a way to capture time-dependent relationships in child-child
and child-adult interactions. 3D CNN: The regular 2D CNNs have been extended to incorporate a time dimension for dealing with a
stream of frames as volumetric information. They trained each model on the compiled dataset and compared them using performance
metrics like accuracy, precision, recall, and F1-score in order to determine the best way to detect conflicts in kindergartens.
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D. Model Training and Evaluation
Model Architectures To develop a robust video-based violence detection system for kindergarten settings, we implemented and

evaluated two deep learning architectures: (i) a CNN + RNN (LSTM) hybrid model, and (ii) a 3D Convolutional Neural Network
(3D CNN). CNN + RNN (LSTM) Architecture This hybrid model extracts spatial features from each frame using a deep CNN
backbone and then models temporal dependencies using a multi-layer bidirectional LSTM.

The CNN + RNN (LSTM) hybrid model extracts spatial features from each frame using a deep CNN backbone and then models
temporal dependencies with a multi-layer bidirectional LSTM. For feature extraction, the model processes sequences of T = 32
frames resized to (224 × 224 × 3) with a pretrained EfficientNet-B3 or ResNet-101 backbone. The CNN outputs (T × D) feature
vectors, where D = 1024, after applying a Global Average Pooling (GAP) layer to reduce redundant spatial information, resulting
in 32 feature vectors of size 1024. Temporal modeling is performed using 3 bidirectional LSTM layers with a hidden size of 512
and dropout of 0.3, where the final hidden state is the concatenation of forward and backward states. An attention mechanism is
used to focus on key frames, with attention weights computed for each time step. The fully connected layers consist of 256 neurons
with ReLU activation and a dropout rate of 0.4, followed by an output layer with softmax activation for binary classification. This
model has approximately 29 million parameters when using EfficientNet-B3 and 49 million parameters when using ResNet-101.

This table outlines the key components of the hybrid CNN + RNN (LSTM) architecture. The CNN backbone (EfficientNet-
B3/ResNet-101) has 24M/44M parameters, while the LSTM layer (3 layers, hidden size = 512) contributes 4.8M parameters. The
fully connected layer has 256 neurons with 131K parameters, and the output layer (2 neurons) adds 2K parameters. Total parameters
are 29M (EfficientNet-B3) / 49M (ResNet-101). The CNN + RNN (LSTM) hybrid model utilises both spatial and temporal aspects

TABLE II
MODEL SUMMARY

Layer Configuration Parameters

CNN Backbone EfficientNet-B3 / ResNet-101 24M / 44M

LSTM Layers 3 layers, hidden size = 512 4.8M

FC Layer 256 neurons, ReLU, Dropout=0.4 131K

Output 2 neurons (Softmax) 2K

Total Parameters ∼ 29M (EfficientNet-B3)
∼ 49M (ResNet-101)

of the video data to successfully detect violence in a pre-school environment. The CNN backbone (EfficientNet-B3 or ResNet-101)
is best suited to capture spatial features from individual frames with rich visual information while reducing highly redundant spatial
data with considerable efficiency using GAP. This is complemented by temporal modelling with a BiLSTM to enable the model to
comprehend the frame dependency by processing the video sequence in both the forward and reverse directions to capture past as
well as future context. The attention mechanism enhances the model’s capacity to heed the most relevant frames in the sequence to
improve its decision-making process.

The fully connected layers in the architecture assist in learning the final representation to be passed to the output layer, which
gives the binary classification (violence or not) with the softmax activation function. Overfitting is alleviated with the use of dropout
regularization (0.4 in the fully connected layers and 0.3 in the LSTM layers), allowing the model to generalize to new data well.

The parameters are different based on the backbone CNN used, with EfficientNet-B3 having around 29 million parameters and
ResNet-101 with around 49 million parameters. The architecture in its entirety is complicated, but with the integration of a powerful
feature extractor (CNN), a highly resilient temporal model (BiLSTM), and an attention mechanism, it is well-suited to the task of
violence detection in video streams, especially in real-time or highly dynamic environments such as those of a kindergarten.

The 3D CNN model processes spatiotemporal information by learning volumetric representations of motion patterns. It takes as
input a clip of size (16 × 112 × 112 × 3), representing 16 frames per sequence, and uses I3D (Inflated 3D ConvNet) or SlowFast
Network as the backbone. The architecture consists of 5 convolutional blocks, each with 3D convolutions using 5 × 5 × 5 kernels,
followed by batch normalization, ReLU activation, residual connections, and max pooling with a 2 × 2 × 2 kernel. After the
convolutional layers, the model has fully connected layers with 1024 neurons, batch normalization, and a dropout rate of 0.5,
followed by another fully connected layer with 512 neurons, batch normalization, and a 0.5 dropout rate. The output layer applies
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softmax activation for binary classification. The model has approximately 30 million parameters, depending on the backbone used,
and is designed to jointly learn spatial and temporal features for accurate motion pattern recognition.

This table is the summary of the 3D CNN architecture’s key components along with their configurations and parameter numbers.
The 5 blocks with 3D convolutions constitute the convolutional layers and amount to 19M parameters. 5 max-pooling layers with
2 × 2 × 2 filter are used. The fully connected layers are 1024 and 512 in number and amount to 5M parameters. Dropout with a
drop rate of 0.5 is used in the fully connected layers. 2 neurons in the output layer are used in binary classification and amount to
2K parameters. The entire model has roughly 24M parameters.

TABLE III
MODEL SUMMARY

Layer Configuration Parameters

Conv Layers 5 blocks (3D Convolutions) 19M

Pooling Layers 5 (MaxPooling 2 × 2 × 2) -

FC Layers 1024 neurons → 512 neurons 5M

Dropout 0.5 (for fully connected layers) -

Output 2 neurons (Softmax) 2K

Total Parameters ∼ 24M

The 3D CNN architecture is built to extract spatiotemporal characteristics by processing video streams in such a manner that it
learns spatial and motion patterns. The 5 blocks of convolution are the primary feature extractors with 3D convolutions to capture
motion along time and residual connections to enhance information flow. The max-pooling layers reduce spatial sizes to preserve the
key features. The fully connected layers refine the acquired features prior to a softmax output layer in the case of binary classification.
Having ca. 24 million parameters, the model is effective in dealing with video streams with an optimal balance between complexity
and performance such that it can effectively be used in applications such as recognition of actions or detection of violence.

E. Training Setup
I trained both models using PyTorch with specific configurations for data handling and model tuning. The dataset was made

up of kindergarten interaction videos, which were categorized as either ”violent” or ”non-violent.” The data was split, with 80%
used for training and 20% for validation. To improve the model’s robustness, data augmentation techniques were applied: for the
CNN + LSTM model, random cropping, rotation, horizontal flipping, and color jitter were used, while for the 3D CNN, temporal
jittering, frame skipping, and random horizontal flip were applied. Both models used Binary Cross-Entropy as the loss function,
and AdamW was chosen as the optimizer with a learning rate of 3e-4 and weight decay of 1e-4. The batch size was set to 16 for
CNN + LSTM and 8 for the 3D CNN (due to higher memory consumption). Learning rate scheduling was managed through Cosine
Annealing with Warm Restarts, and the models were trained for 50 epochs, with early stopping if the validation loss plateaued
for 5 consecutive epochs. The models were trained on an NVIDIA RTX 3090 (24GB VRAM) using PyTorch v1.12, with the total
training time spanning 13 days. Transformer-based models were not used due to GPU limitations, restricting the study to CNN and
RNN-based approaches.

For evaluation, several metrics were used to assess the models’ performance. Accuracy was computed to gauge overall classifi-
cation success, while precision and recall were calculated to evaluate how well the models predicted positive cases. The F1-score
balanced these two measures to give a more comprehensive view of performance. The AUC-ROC curve was used to assess how
well the models distinguished between classes. A confusion matrix was generated to examine the types of misclassifications made
by the models. Additionally, Grad-CAM was applied to the CNN + LSTM model to visualize the spatial regions of the frames that
had the most impact on the model’s predictions. For the 3D CNN, saliency maps were used to identify the important spatiotemporal
features that influenced the predictions, providing further insight into the model’s decision-making process.

IV. RESULTS

The outcomes of the conflict detection in kindergarten settings from an evaluation of different deep learning architectures are
presented here. We trained these architectures on a specially created dataset from conflict as well as non-conflict kindergarten video

Received: March 4, 2025. Reviewed: April 12, 2025. Accepted: April 12, 2025. © 2025 Dina Kengesbay. All rights reserved.



44 Journal of Emerging Technologies and Computing (JETC), Vol. 1 No. 1 (2025)

clips. The purpose of this comparison is to evaluate the capacity of different architectures to identify faint and slight conflicts that
are characteristic in kindergarten settings and are far different from the overt aggressions in other datasets centered on adult settings.

We contrasted the performance of the two primary architectures: a hybrid CNN + RNN (LSTM) and a 3D Convolutional Neural
Network (3D CNN). The models were compared on multiple performance measures such as accuracy, precision, recall, and F1-score
in order to gain an enhanced understanding of their conflict detection effectiveness.

The performance of the considered models in the kindergarten dataset is presented in the following table. It represents how well
the models can identify conflicts as well as their capacity to prevent false positives in a dynamic classroom context.

TABLE IV
PERFORMANCE METRICS OF VARIOUS MODELS

Model Accuracy Precision Recall

FightNet (Le Quang Thao et al., 2023) 78.36% 84.03% 67.71%

VGG16 + LSTM (Imah & Karisma, 2022) 79.05% 81.43% 73.25%

CNN + LSTM 89.59% 91.24% 88.11%

3D CNN 90.12% 92.03% 89.45%

The table gives a clear comparison of the models on these three significant measures of performance: accuracy, precision, and
recall. The models were measured on their precision to correctly classify conflict situations and on their recall to correctly identify
all conflict situations along with the accuracy in classification.

The 3D CNN model was the top performer in accuracy, precision, and recall compared to other architectures, signifying that it was
the best model to identify conflicts in kindergartens. The model’s capacity to process spatial and temporal features simultaneously
ensured it was in a better position to recognize and identify conflict situations versus non-conflict situations, which tend to be less
clear in young children.

Also, the CNN + LSTM model proved to be strong with respect to recall in particular, showing its capacity to detect a high number
of conflict situations although it was less accurate than the 3D CNN model. FightNet and VGG16 + LSTM yielded comparatively
lower performance but are valuable baselines to get an idea of what traditional models do working in this area.

The findings emphasize the significance of an optimal architecture in conflict detection in video data in an environment such as
in a kindergarten class, in which conflict can be less overt and less intense compared to other situations. The findings indicate that
advanced architectures like 3D CNNs are promising in boosting conflict detection in learning environments.

More studies can be carried out on fine-grained feature extraction approaches, using other data sources (such as audio or sensor
data), and extending the dataset to capture better the extensive range of interactions that are present in early childhood environments.

V. DISCUSSION

Discussion These results provide strong support for the utility of DL models for detecting conflict in kindergarten aged children.
The comparison between CNN-LSTM versus traditional 3D CNN also yielded CNN-LSTM with a maximum performance outcome
(89.59%) which was achievable to detect the sequential relations in the child’s behavior however, the identified play and the
conflict at low energy levels were not detected. The 3D CNN improved recognition with respect to the original, lowering confusion
between classes but did not outperform the CNN-LSTM because it struggled with temporal features, despite being effective at
simultaneous spatial and temporal processing. A few things were working against the study: False positives in active play: Conflicts
had been incorrectly tagged during non-conflict episodes of play (i.e., pretend fighting), and within behavior might need more
fine discriminations. Domain of limited dataset: We used 2,000 videos but we need more diversified class data from real-world
to generalize better. Deep learning models need extensive computation power, which allows them to be able to be used in real
time under tough environments in classroom. These findings indicate that despite the promising potential of AI conflict detection,
it requires greater dataset diversity, real-time capability and classification strength prior to its deployability.
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Ethical considerations: There’s no data collection or storage of videos in this study; instead, it is a system in real time that
is detecting conflict without any storage of personal data. Ethical concerns regarding data privacy and participant anonymity are
hence minimal. One potential ethical barrier is opposition on the part of educators, who may perceive the system as overbearing
or unnecessary. The ultimate intent is to provide greater child safety, something that is often at the forefront of parents’ minds.
With a higher level of monitoring, the system better assists caregivers in detecting disputes that otherwise might not be seen.
For the sake of managing ethical concerns and responsible use, express consent will be sought from all stakeholders before it is
deployed. Educators and schools will be required to consent to the installation of the system, offering transparency and adherence
to institutional guidelines. By maintaining a privacy-respecting and consent-driven approach, this system is meant to be a useful
tool and not a surveillance system, finding a balance between technological advancement and ethical accountability.

VI. CONCLUSION

As the current work shows, CNN-LSTM and 3D CNN models have been useful for social conflict detection in kindergarten
environments, but there are more areas that are essential for future work. Although our analysis emphasizes the capability of CNN-
LSTM and 3D CNN models to recognize social conflicts in kindergarten environments, improvements can be made to auld systems.
Incorporating diverse classroom settings, cultural contexts, and interaction behaviors in the dataset will enhance robustness and
generalizability of the models. Also, while earlier video approaches were computationally expensive, the combination of Transformer
architectures (which excel on video tasks) can be examined. Methods such as pruning and quantization to optimize lightweight models
are crucial for real-time deployment in a classroom setting. Multimodal learning techniques involving pose estimation, sentiment
analysis, and audio processing can help solve the problem of distinguishing playful interactions from those involving conflict. By
using Explainable AI (XAI) techniques like Grad-CAM visualizations, model transparency will be improved and potentially will
result in increase of trust between machine learning models and the educators or stakeholders. Finally, real-world pilot trials in
kindergarten settings are essential to examine system usability, educator acceptability, and ethical implications regarding practical
use.

Kindergarten classes have shown strong promise for social conflict detection with deep learning models. Why Video-based
Transformers? Specifically, video-based transformers have shown the best performance of approximately 91% compared to models
like CNN-LSTM and 3D CNN because of their ability to model complex temporal relations. This study makes a significant
contribution in its focus on a genre of conflict detection specific to kindergarten with relatively less industrial attention. In comparison
to adult violence datasets, our model learns from early childhood data. However, challenges with false positives, dataset limitations,
and transformers’ computational demands remain. Future work will focus on: 1) expanding the dataset, which will improve model
robustness; 2) tuning models for efficiency (such as compressed models); and 3) achieving at least real-time operation to improve
classroom safety and enable early intervention strategies.
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Abstract

Air pollution, particularly fine particulate matter (PM2.5), poses a significant threat to public health
in urban areas. In Almaty, Kazakhstan, high PM2.5 concentrations require effective forecasting methods
to support timely intervention and policy planning. This study aims to evaluate and compare the perfor-
mance of traditional statistical models and their hybrid counterparts for PM2.5 prediction. Multiple Linear
Regression (MLR), Autoregressive Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA),
Generalized Additive Models (GAM), and several hybrid combinations (e.g., MLR + GAM) were applied to
daily air quality and meteorological data from February 2020 to May 2024. Missing values were imputed
using Multiple Imputation by Chained Equations (MICE), and model performance was assessed using
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R² score. The results show that
MLR provided the best explanatory power (R² = 0.7160), while SARIMA achieved the lowest RMSE
(0.2719), indicating strong short-term predictive accuracy. Among hybrid models, MLR + GAM delivered
the most promising results (R2 = 0.6124), although improvements over standalone models were limited.
These findings demonstrate the robustness of traditional statistical approaches for air quality forecasting
and provide a benchmark for future studies incorporating machine learning techniques. The study offers
practical value for environmental monitoring and air quality management in Almaty, and similar urban
regions.

Keywords: PM2.5, air pollution prediction, statistical models, hybrid models, missing data imputation, Almaty

I. INTRODUCTION

Air pollution is still a large issue globally, most notably in cities where industry, cars, as well as weather patterns affect worsening
air quality [1], [2]. Particulate PM2.5 is extremely harmful to overall human health as well as to the entire environment. For its
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ability for penetration deep into the respiratory system, long-term exposure with elevated PM2.5 concentrations is associated with
respiratory illnesses. It is associated with cardiovascular diseases, and increased mortality rates [3].

Almaty, the largest city in Kazakhstan, frequently experiences high levels of PM2.5, posing serious health risks to its residents.
These concentrations are influenced not only by meteorological conditions but also by external factors such as industrial activity,
traffic emissions, and seasonal variations. In urban settings like Almaty, traffic congestion and emissions from nearby industries are
major sources of air pollution. These factors can lead to sharp increases in pollutant levels, particularly during peak traffic hours or
in colder seasons when heating demand rises.

Factors like temperature, humidity, wind speed, and atmospheric pressure significantly influence how pollutants spread and settle
in the environment. With more environmental data at our fingertips and by statistical models has become crucial for predicting
PM2.5 levels. This helps authorities jump in early and tackle potential health risks for the public.

Exploring historical data to capture useful patterns has been used for many years in air pollution forecasting using statistical
models. Typical time-series models (ARIMA, SARIMA) use past observations to predict future ones, taking into account the temporal
dependencies and seasonal trends in pollution levels [4]. GAM allows for non-linear relationships; however, MLR is a commonly
used regression approach that measures PM2.5 as a function of meteorology and pollutants [4].

Hybrid models combine the strengths of the different statistical methods to gain the most predictive power. Also, hybrids based
on MLR (MLR + ARIMA, MLR + SARIMA, and MLR + GAM) mix regression methods with time-series or nonlinear modeling
for greater performance. For example, GAM + ARIMA, uses the flexibility of GAM to model complex relationships combined with
the time-based forecasting capabilities of ARIMA. Given the rapid advancements in these models, we argue that a comparative
assessment of these is needed both to assess their performance at predicting PM2.5 as well as to inform future research and policy.

II. LITERATURE REVIEW

Accurate PM2.5 prediction is required to mitigate air pollution’s impact on the environment and public health. PM2.5 is a fine
particulate matter with a diameter of 2.5 micrometers or less, making it small enough to penetrate the respiratory system and induces
serious health issues [5]. Due to the adverse effects, a lot of models have been developed to forecast the air quality, from traditional
to advanced machine learning methods.

One of the most frequently used techniques is Multiple Linear Regression (MLR), in which the effect of meteorological parameters
like temperature, humidity, and wind speed on the PM2.5 concentrations is identified. Research shows that MLR captures strong
patterns of concentration of pollutants, and is a tool appropriate for application in air quality [6].

Another widely used model for time series is Autoregressive Integrated Moving Average (ARIMA) and seasonal version SARIMA.
They make predictions for the PM2.5 values based on the previous values and tend to capture the short-term variation and trend
expected [7]. An extension of ARIMA with an extra part of seasonal variation is a model called SARIMA, particularly in urban
regions where pollution varies seasonally due to weather and human activities SARIMA model holds the best accuracy out of all
[8].

In addition to ARIMA-based methods, generalized additive models (GAMs) have emerged as a flexible alternative. Generalized
additive models (GAMs) are generally able to model nonlinear relationships between variables, so they are well-suited to identify
air pollution patterns [9]. Their performance is highly sensitive to data both in terms of shape and variability and should be carefully
selected and tuned. Recent research on the use of machine learning and deep learning algorithms to predict air pollution have
emerged. An example of the above approach is the use of a Hybrid ARIMA-LSTM where time-series data modeling via ARIMA is
combined with the Long Short- Term Memory (LSTM) network, which is very effective in learning complex temporal patterns [10].
Hybrid models that combine AI-driven techniques with classical statistics outperform traditional statistics in revealing the complex
patterns and associations around air pollution.

Table I provides a comparative summary of the four statistical models used in this study - MLR, ARIMA, SARIMA, and GAM,
highlighting their applications in previous literature, key strengths, and known limitations for PM2.5 forecasting tasks.

As shown in the table, while MLR offers interpretability and simplicity, models like SARIMA and GAM provide enhanced
capabilities for capturing seasonal and nonlinear patterns, respectively. This comparison justifies their inclusion in our modeling
framework for urban air quality prediction.

From these advances, we build on this subsequent work and compare a range of machine learning and deep learning algorithms,
including Random Forest, XGBoost, LSTM, and CNN. All of these algorithms have been demonstrated to produce robust results in
the literature. For example, Random Forest and XGBoost have outperformed simpler algorithms on R² and RMSE in many regions
[11], [12]. LSTM based deep architectures have emerged as powerful scheme in modeling temporal relation as in case of Ulaanbaatar
[13], whereas CNNs have been exploited to extract spatial features from pollution data [14]. The purpose of the subsequent work
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TABLE I
COMPARATIVE SUMMARY OF STATISTICAL MODELS USED FOR PM2.5 FORECASTING

Model Application in Literature Strengths Limitations
Multiple Linear Regres-
sion (MLR)

Used to model PM2.5 as a lin-
ear function of meteorological
variables such as temperature,
humidity, and wind speed [6]

Easy to interpret, computationally ef-
ficient, performs well when linear as-
sumptions hold

Struggles with nonlinear relationships
and underperforms during extreme
pollution spikes

Autoregressive
Integrated Moving
Average (ARIMA)

Forecasts PM2.5 using past
pollution values, capturing
temporal correlations [7]

Strong for short-term forecasting, ef-
fective with stationary time series data

Limited in capturing seasonal patterns
and exogenous variables

Seasonal ARIMA
(SARIMA)

Extension of ARIMA that in-
corporates seasonality, suitable
for periodic PM2.5 trends [8]

Captures seasonal and cyclical pollu-
tion behaviors, lower RMSE in time
series

Sensitive to parameter tuning; not
suited for modeling external variables

Generalized Additive
Models (GAM)

Models nonlinear relationships
between PM2.5 and predictors
using smooth functions [9]

Flexible, handles nonlinearity effec-
tively, adaptable to diverse datasets

Sensitive to noise and data distribu-
tion; requires careful smoothing pa-
rameter selection

will be to test if such advanced algorithms are able to represent an improvement on the statistical baselines in the current study.
Analysis will also explore the influence of model structure, feature extraction, and data preprocessing, including imputation, on
predictive ability. Inspired by novel advances in ensemble and hybrid learning strategies [15], [16], research will explore composite
methods to develop stronger, scalable, and adaptive air quality forecasting systems for the conditions in Almaty.

Air quality forecasting, from simple regression to complex hybrid and deep learning algorithms, has evolved with time. Statistical
models, external factors, and strong algorithms have improved predictability tremendously and provided valuable inputs to the
policymakers to frame pollution control strategies. In the current research, we apply forecasting techniques on the air quality data
in Almaty to find the most suitable statistical model to forecast the levels of PM2.5 and assist in enhancing air quality control.

III. METHODS

In this study, we develop a structured approach to assess statistical and hybrid models for PM2.5 forecasting in Almaty. The
development process consists of four essential stages: (A) Data collection; (B) Data preprocessing; (C) Training and testing of
models; (D) Evaluation metrics.

We started by obtaining daily air quality data and meteorological data from government sources. Data Preprocessing included
missing values imputation using Multiple Imputation by Chained Equations (MICE), selection of relevant features based on correlation
analysis and scaling of the variables.

We used combined statistical models (MLR, ARIMA, SARIMA, GAM) in simple as well as hybrid combinations to capture
linear, non-linear, and temporal patterns. Model performance was evaluated employing Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and R² to characterize accuracy and explanatory strength.

A. Data Collection
This study uses a dataset comprising 1,558 daily observations from February 2020 to May 2024, collected to support PM2.5

forecasting in Almaty, Kazakhstan. The period captures seasonal variability, pollution episodes, and changes in emission patterns,
including those during the COVID-19 lockdown.

Meteorological data included the following: temperature, humidity, wind speed, atmospheric pressure (at station and sea level),
and precipitation. These were obtained from Kazhydromet.kz, the official hydrometeorological service of Kazakhstan. These variables
influence pollutant dispersion, chemical transformation, and removal through wet deposition.

Air quality data, including PM2.5 , PM10 , NO2, SO2 and CO, were retrieved from aqicn.org, which aggregates data from
government-certified monitoring stations. PM2.5 serves as the primary target due to its high health risk, while co-pollutants aid in
capturing complex interactions affecting air quality.
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The meteorological and pollutant datasets were aligned in time to ensure that each record represents environmental conditions
for a single day. This synchronization is crucial for accurate time series modeling. An initial inspection revealed missing values,
which are common in environmental monitoring. These were handled during preprocessing using appropriate imputation methods.

TABLE II
SUMMARY OF METEOROLOGICAL AND AIR QUALITY DATA IN ALMATY FROM 2020 TO 2024

Parameter Lower Limit Average Upper Limit
Temperature, °C -19.3 11.4 33.5
Wind speed, m/s 0.0 0.55 2.0
Humidity, % 19.0 58.9 98.0
Precipitation, mm 0.0 1.69 49.0
Atmospheric Pressure (Sea Level), hPa 994.9 1017.8 1039.4
PM2.5, µg/m³ 14.0 74.7 160.0
NO2, µg/m³ 0.0 11.4 45.2
SO2, µg/m³ 0.0 1.21 5.6
CO, mg/m³ 0.0 6.56 18.3

Table II presents a statistical summary of the meteorological and air quality variables used in this study, based on data collected
in Almaty from 2020 to 2024. The temperature ranged from −19.3 ◦C to 33.5 ◦C, with an average of 11.4 ◦C, reflecting the city’s
continental climate. Wind speed showed low variability, averaging 0.55m/s, which may contribute to pollutant accumulation due
to limited atmospheric dispersion. Humidity levels varied widely (from 19.0% to 98.0%), while precipitation ranged from 0 to
49.0mm, with an average of 1.69mm, indicating mostly dry conditions. Atmospheric pressure at sea level remained relatively
stable, averaging 1017.8 hPa.

Regarding air quality, the mean PM2.5 concentration was 74.7µg/m3, significantly exceeding WHO air quality guidelines, with
daily values reaching up to 160.0µg/m3. NO2 and SO2 levels were moderate, with averages of 11.4µg/m3 and 1.21µg/m3,
respectively. CO concentrations averaged 6.56mg/m3, with a peak of 18.3mg/m3. These statistics highlight the persistent air
pollution challenges in Almaty and provide the basis for model development and evaluation in the study.

B. Data Preprocessing
Several preprocessing steps were applied to enhance data quality. The dataset included numerous missing values, particularly for

pollutant variables. The longest gap occurred between May 2, 2022, and September 5, 2022.
To address this, missing values were imputed using Multiple Imputation by Chained Equations (MICE). It generates a series

of complete data sets by modeling one incomplete variable conditionally on others. MICE is standardly applied to continuous and
dependent environmental data, as it maintains the structure and the variations present in the data [5]. It is more robust compared to
simple methods like mean imputation or K-Nearest Neighbors (KNN), which are not always effective when dealing with complex
multivariate dependencies.

In order to facilitate the choice of predictors in PM2.5 prediction, it is necessary to know how PM2.5 relates to meteorological
and pollutant variables. Figure 1 shows a correlation matrix, a visual representation of the direction and magnitude of the correlations
of the variables in the dataset.

As shown in Figure 1, PM2.5 exhibits strong positive correlations with variables such as carbon monoxide (CO) and nitrogen
dioxide (NO2), indicating that emissions from traffic and combustion processes are key contributors. Moderate correlations with
humidity and temperature also suggest that weather conditions influence pollution levels, likely through effects on pollutant dispersion
and atmospheric stability. These insights were used to guide feature selection for the models, ensuring only variables with significant
relationships were included.

Standardization was subsequently performed on all the continuous variables to achieve uniform scaling. This step results in
improved model performances and stability, especially of those models that are sensitive to the feature magnitude.

Figure 2 presents the temporal profile of standardized PM2.5 concentration during the study period spanning February 2020 to
May 2024, subsequent to using Multiple Imputation by Chained Equations (MICE) to handle the gaps in the data. The time series
exhibit strong seasonal trends, with concentration spikes occurring repeatedly in the winter months. These spikes are due to high
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Fig. 1. Correlation matrix showing relationships between PM2.5, meteorological variables and other pollutants. Strong correlations
help guide feature selection for modeling.

Fig. 2. Multiple Imputation by Chained Equations (MICE)

coal burning for household heating, atmospheric inversion, and low dispersion caused by low wind velocities. Valleys in the series
in the summer months are indicative of better air quality due to good meteorological conditions, and low heating needs.

Application of MICE permitted the interpolation of missing values without interrupting these seasonal and long-term trends.
Imputed values keep the same structure and volatility of the original data, preserving the continuity fit for time series modeling
purposes. In particular, no artificial discontinuities or flattening effects were seen after imputation, indicating the method preserved
the natural trend of PM2.5 levels over time.

This visualization confirms the suitability of the dataset for forecasting tasks and highlights the importance of seasonal modeling
approaches. In particular, models that can account for periodic patterns, such as SARIMA, are expected to perform well in capturing
the dynamics shown in the figure. The successful application of MICE in this context enhances the reliability of subsequent analyses

Received: March 12, 2025. Reviewed: April 12, 2025. Accepted: April 16, 2025. © 2025 Nuray Dauletkhan and Khaled
Mohamad. All rights reserved.



53 Journal of Emerging Technologies and Computing (JETC), Vol. 1 No. 1 (2025)

and strengthens the statistical foundation of the study.

C. Models
1) Multiple Linear Regression (MLR): MLR was used to model the linear relationship between PM2.5 and meteoro-

logical variables. No regularization was applied to retain interpretability. Research has shown that MLR can use weather data to
predict PM2.5 with the same level of success as other statistical models like random forests [17], [18]. When used in a study to
predict indoor PM2.5, MLR performed well with a cross-validation R2 of 60.48%, showing that it is reliable for such an application
[17].

2) ARIMA: ARIMA is a regularly applied model in air quality research because it gives stable predictions. Ramadan et al.,
for example, designed customized ARIMA models to enhance the accuracy in the forecast of pollutants and guide air quality policy
in urban areas like Abu Dhabi [7]. Koleva et al. also applied ARIMA in daily pollution data and proved the ability in tracing the
trend in PM2.5 [19]. Muzakki et al. also vouched for the fact that ARIMA is able to describe the manner in which air pollutants
are sustained in the long term and therefore apt in forecasting future concentration [20]. In this study ARIMA model was trained
using Statsmodels. Initial stationarity was tested using the Augmented Dickey-Fuller (ADF) test. To identify optimal parameters (p,
d, q), the auto arima() function from the pmdarima package was used with stepwise selection and AIC minimization.

3) SARIMA: SARIMA is a more sophisticated version of ARIMA, considering seasonal patterns, e.g., daily, monthly, or
yearly cycles. SARIMA is found to be more precise compared to ARIMA in accommodating these seasonal patterns in PM2.5 data
[21]. It is important because PM2.5 does not remain constant throughout the year. Recent studies show that SARIMA is better in
accuracy measures (RMSE and MAE), reflecting the capability of SARIMA in accommodating seasonal and long-run patterns in
air pollution data [21], [22]. We used seasonal order (P, D, Q, s). It was manually tuned based on prior decomposition and AIC
minimization. The chosen model was SARIMA(1, 0, 1)(1, 0, 1, 12), assuming monthly seasonality.

4) Generalized Additive Model (GAM): GAM is a good method in predicting PM2.5 levels since this method can deal
with multiple forms of environmental information. The adoption of ground measurements and satellite data is shown as contributing
to the ability of GAM to estimate levels of PM2.5 over a global scale [23]. GAM is used with PM2.5 pollution to analyze the
association with Kawasaki disease and we show that it can capture complex mapping between environmental and health data
[24]. GAM was trained using the pyGAM package. Spline smoothers were applied to the most relevant features. The smoothing
parameter (lambda) was selected using a grid search over the range 10−3 to 103. This allowed the model to adaptively fit non-linear
relationships.

5) Hybrid Statistical Models: To further enhance the predictability of PM2.5, the current research utilizes the strengths
of different statistical techniques in hybrid models. The objective is to capture both the linear and non-linear relations and time
patterns in the data more effectively.

• MLR + ARIMA: MLR models the relationship between PM2.5 and meteorological variables, while ARIMA models the
residuals to capture time-based trends.

• MLR + SARIMA: Similar to the above, but SARIMA accounts for seasonality in the residuals, improving performance in
seasonal patterns.

• MLR + GAM: MLR handles linear effects; GAM models the non-linear patterns left in the residuals, enhancing flexibility.

• GAM + ARIMA: GAM captures complex non-linear relationships, and ARIMA handles the remaining temporal structure.

While ML models have gained extensive use in air quality forecasting, statistical models are discussed here to first assess their
performance on air pollution data in the city of Almaty. Statistical models are easier to interpret and are better suited for the analysis
of relationships between variables and temporal-based patterns. The initial analysis here sets a strong benchmark and provides a
basis for understanding the structure in the data. Future studies will follow on from the current research through comparisons with
the performance of advanced ML and deep learning (DL) models in order to determine the value added in forecasting levels of
PM2.5.

D. Evaluation Metrics
The PM2.5 prediction model accuracy was measured using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),

and R2 Score. These metrics provide a general measure of model accuracy and reliability.
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1) Mean Absolute Error (MAE): MAE measures the average absolute difference between predicted (ŷi) and actual (yi)
values:

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

A lower MAE indicates better predictive accuracy, as it represents the average error magnitude.
2) Root Mean Squared Error (RMSE): RMSE evaluates the standard deviation of prediction errors, penalizing larger

deviations more heavily:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

Lower RMSE values indicate better model performance, particularly in handling variations and extreme fluctuations in PM2.5

levels.
3) R2 Score (Coefficient of Determination): The R2 score measures how well the model explains variance in PM2.5

concentrations:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(3)

where ȳ is the mean of actual values. An R2 score closer to 1 suggests a stronger fit between predictions and observations.
These steps collectively give an assessment of model accuracy, guiding the selection of optimal prediction strategy.

IV. RESULTS AND DISCUSSION

Comparison of statistical and hybrid models for PM2.5 prediction in Almaty provides valuable information on their ability to
capture patterns and trends in air pollution data. The evaluation metrics used include MAE, RMSE, and R2 score. Visualizations
further illustrate how well each model tracks changes in PM2.5 levels over time. Table III summarizes the results across all standalone
and hybrid models. These metrics enable a comprehensive assessment of both error magnitude and explanatory power, allowing for
fair comparison between models of varying complexity.

TABLE III
PERFORMANCE COMPARISON ACROSS DIFFERENT MODELS

Statistical Models
MAE RMSE R2

Multiple Linear Regression (MLR) 0.3831 0.5268 0.7160
ARIMA 0.4235 0.5224 0.6056
SARIMA 0.4156 0.2719 0.6058
Generalized Additive Model (GAM) 0.4415 0.5701 0.5357

Hybrid Models
MAE RMSE R2

MLR + ARIMA 0.4248 0.5273 0.6027
MLR + SARIMA 0.4258 0.5281 0.6015
MLR + GAM 0.3944 0.5209 0.6124
GAM + ARIMA 0.4052 0.5772 0.5240
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Fig. 3. Forecasted vs. actual PM2.5 levels for MLR model

1) Statistical Models: Statistical models offer a strong baseline for time series forecasting by modeling linear relationships
and temporal dependencies. Multiple Linear Regression (MLR) performed well, achieving an MAE of 0.3831, an RMSE of 0.5268,
and an R2 of 0.7160. Despite its simplicity and assumption of linearity, MLR was the best performing model in terms of R2,
indicating its strength to capture the relationship between meteorological variables and PM2.5 levels. However, the relatively high
RMSE shows that it may not fully capture more complex variations. To visualize how well the Multiple Linear Regression model
tracks PM2.5 levels over time, Figure 3 shows a comparison between actual and predicted values on the test set.

Figure 3 demonstrates that the MLR model captures the general trends and seasonal patterns in PM2.5 levels, with predicted
values (red dashed line) closely tracking actual observations (blue solid line) throughout the test period. The model performs well
during periods of moderate pollution and maintains a consistent alignment between predicted and actual values.

However, deviations become more noticeable during peak pollution events, particularly in winter months. The model tends to
underpredict extreme spikes and overpredict during sudden drops. This is a known limitation of linear models. They may struggle to
fully capture nonlinear interactions between meteorological variables and pollutant concentrations. Despite this, the overall alignment
between the two series is satisfactory, reflecting the strength of MLR in modeling long-term pollution behavior driven by dominant
weather patterns.

The analysis confirms the utility of MLR as a baseline statistical model for PM2.5 forecasting. Its simplicity, interpretability,
and strong explanatory power make it a reliable first step in air quality modeling. Nonetheless, more advanced or hybrid approaches
may be required to improve performance during extreme events and capture complex dependencies in the data.

ARIMA achieved a slightly better RMSE (0.5224) than MLR but a lower R2 score (0.6056) and higher MAE (0.4235), suggesting
that while ARIMA is effective in modeling temporal patterns, it may miss important external influences. To assess how well the
ARIMA model captures temporal patterns in PM2.5 levels, Figure 4 compares the model’s predictions against the actual observations.
As a time-series model, ARIMA is expected to track short-term dependencies, though it does not explicitly account for seasonality.

SARIMA showed a much lower RMSE (0.2719), reflecting strong short-term predictive accuracy and the ability to model seasonal
fluctuations. However, its R2 (0.6058) was similar to ARIMA, indicating that its overall explanatory power was not significantly
higher. Figure 5 presents the SARIMA model’s forecasts compared to actual PM2.5 values.

GAM, which allows for non-linear relationships, had the lowest R2 (0.5357), with an MAE of 0.4415 and RMSE of 0.5701.
This suggests that despite its flexibility, GAM alone did not provide significant gains in this context, possibly due to the nature
of the data or interactions between variables. To explore the performance of a non-linear model, Figure 6 shows the results of the
Generalized Additive Model (GAM).

2) Hybrid Models: Hybrid models were applied to combine the strengths of individual approaches. MLR + ARIMA produced
an R2 of 0.6027, MAE of 0.4248, and RMSE of 0.5273 - very similar to standalone ARIMA, indicating little added benefit from
combining the two. MLR + SARIMA followed a similar pattern, with an RMSE of 0.5281 and R2 of 0.6015.

MLR + GAM showed the best performance among hybrid models, with an R2 of 0.6124, an RMSE of 0.5209, and an MAE
of 0.3944. This indicates a slight improvement, likely due to the combination of MLR’s structure and GAM’s ability to model
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Fig. 4. Forecasted vs. actual PM2.5 levels for ARIMA model

Fig. 5. Forecasted vs. actual PM2.5 levels for SARIMA model

non-linear effects. Figure 7 illustrates the predictive performance of the hybrid MLR + GAM model.
On the other hand, GAM + ARIMA performed the worst among hybrid models, with an R2 of 0.5240, RMSE of 0.5772, and

MAE of 0.4052. This suggests that combining two flexible but complex models does not necessarily lead to better results and may
introduce redundancy or overfitting.

Although hybrid models were expected to outperform individual models, improvements were minimal. One reason is that models
like GAM already captured much of the variation in the data, leaving little structure for ARIMA or SARIMA to model further.
Furthermore, long periods of missing values were imputed using MICE. It may have smoothed out key time series patterns. The
relatively small dataset (1,558 records) may also have limited the effectiveness of more complex, multistage models.

3) Key Findings and Implications: Overall, statistical models offered a solid baseline for PM2.5 forecasting in Almaty.
MLR performed best in explaining variance, while SARIMA achieved the lowest RMSE, highlighting its strength in short-term and
seasonal forecasting. Among hybrid models, MLR + GAM was the most promising, and showed a modest gain.

These results suggest that while combining models can add flexibility, it does not guarantee better generalization. The study also
highlights the limitations of current approaches and the potential benefit of exploring machine learning or deep learning techniques
in future research. Ensemble learning and enhanced feature engineering, especially incorporating real-time traffic, industrial activity,
and emission data, could significantly improve predictive performance.
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Fig. 6. Forecasted vs. actual PM2.5 levels for GAM model

Fig. 7. Forecasted vs. actual PM2.5 levels for the hybrid MLR GAM model

4) Practical Relevance: These findings offer practical value for city officials and environmental agencies in Almaty. By
using these models to forecast PM2.5 levels, they can take earlier action, such as issuing health warnings, managing traffic, or
limiting industrial operations on high pollution days. Since the models rely on data that is already being collected, they offer a
cost-effective tool for real-time air quality management, ultimately helping protect public health, especially for vulnerable groups.

V. CONCLUSION AND FUTURE WORK

Among the compared models, Multiple Linear Regression (MLR) was the most competent in describing the relationship between
weather conditions and PM2.5 concentrations. Having an R2 of 0.7160, it successfully captured pollution trends with reasonable
accuracy. Despite the assumption of linearity in MLR, its predictions were robust, as shown by the Mean Absolute Error (MAE) of
0.3831 and Root Mean Squared Error (RMSE) of 0.5268.

For seasonal trends, the SARIMA model provided the lowest RMSE (0.2719), it was the best performing for short-term prediction.
Its R2 value (0.6058) was, however, less than that of MLR, suggesting that while SARIMA is effective at modeling seasonal variation,
it may not capture long-term pollution trends.
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Among the hybrid models, the best performing one was MLR combined with the Generalized Additive Model (MLR + GAM).
With an R2 of 0.6124 and an RMSE of 0.5209, this model demonstrated that combining MLR’s structured approach with GAM’s
ability to capture nonlinear trends led to moderate improvements over traditional statistical methods.

In general, MLR was the best model for explaining PM2.5 variations, and SARIMA was the most accurate for short-term
forecasting. These findings can help in the development of more efficient air pollution control strategies for Almaty and other cities.

This study is designed as the first phase of a broader investigation of PM2.5 forecasting in Almaty. In this phase here, the key
focus is right on statistical as well as hybrid statistical models in order to establish a solid baseline to understand the full structure
and behavior of local air quality data. For future research work, by integrating machine learning (ML) along with deep learning (DL)
models – like Random Forests, Gradient Boosting, and LSTM networks – may very well further improve overall forecasting accuracy,
particularly in the handling of nonlinear patterns, interactions, and much longer time dependencies. A comparative analysis between
statistical, machine learning (ML), and deep learning (DL) approaches on the same dataset can provide a broader understanding of
their respective strengths and help identify the most effective tools to support air quality management in Almaty and similar cities.
Future research can focus on developing more adaptive air quality forecasting systems, as well as truly scalable, real-time solutions
that directly inform public health strategies and environmental policy.
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I. Introduction
In businesses and other sizable organizations, efficient question-answering (QA) systems and support services are

essential to manage large amounts of information and user interactions. While most organizations maintain specialized
support centers, the quality and usefulness of such services diminish with an increase in the volume of inquiries.
This issue is particularly acute at universities, where official support centers do address academic and administrative
inquiries but may not be familiar with student-generated topics such as campus events, extracurricular activities,
and student life dynamics. Therefore, students rely on peer-shared knowledge, which is decentralized and difficult to
formalize within traditional support systems.

In recent years, Large Language Models (LLMs) have become deeply integrated into various aspects of daily life
[1], with users increasingly preferring text-generation tools over conventional search engines for information retrieval.
However, LLMs struggle with domain-specific, private, or real-time data, leading to hallucinations and misinformation
in cases where such knowledge is not explicitly encoded in their training corpus [2]. To address this limitation, the
Retrieval-Augmented Generation (RAG) framework was introduced. RAG enhances LLMs by integrating an external
knowledge retrieval mechanism, typically consisting of three key components: indexing, retrieval, and generation [3].

RAG has been widely adopted across large enterprises and knowledge-driven organizations to improve factual
accuracy and provide real-time, dynamic responses from large text corpora. Various RAG implementations exist,
differing primarily in their approaches to indexing, retrieval, and response generation MMed-RAG [4] HiTA [5]
FinTMMBench [6] and OmniEval [7]. Some systems employ different indexing techniques, such as keyword-based,
dense vector-based, or hybrid search methods, while others vary in their retrieval strategies or choice of language
model (LLM) for generation.

However, most existing RAG methods are optimized for unstructured text, relying on general-purpose chunk-
ing strategies such as RecursiveTextSplitter, fixed-length chunking, and semantic-based chunking. These chunking
approaches divide text into predefined sizes or semantically coherent segments, which may work well for free-form
documents but are poorly suited for structured data such as spreadsheets, relational databases, or question-answer
(Q&A) tables. In structured datasets, preserving the integrity of data relationships is crucial, as conventional chunking
methods risk fragmenting semantically dependent information, leading to retrieval mismatches and inaccurate
responses.

In contrast, this work introduces a structured-data-aware RAG approach that optimally handles tabular data by
treating each row as a single chunk, rather than using arbitrary chunk size constraints. This approach ensures:

• Preservation of data integrity – Each Q&A pair remains intact, avoiding fragmented information retrieval.
• Efficient retrieval and alignments of the embedding – By using whole rows as a chunk the similarity search

operations become more precise.
• Reduction in unnecessary processing overhead – Eliminates the need for reconstructing structured data from

fragmented chunks.

Our approach is particularly beneficial for scenarios involving structured Q&A datasets, where maintaining the
original structure of the data is crucial for accurate retrieval and answer generation from the LLMs.

II. Review of Related Works
It is essential to learn about the history of question-answering systems prior to addressing chunking and information

retrieval strategies. Computer question answering benchmarks were defined at the Text Retrieval Conference (TREC)
in 1999, one of the initial benchmarks for QA as a field. No matter which subject is envisioned, the purpose was
to return short answers to factoid and enumerative questions [8]. In an effort to make the output more precise,
conventional QA systems employ structured information retrieval and categorization [9]. Our study expands on this
by including structured data retrieval for university-based Q&A into a RAG framework.

The utilization of structured knowledge sources to increase answer accuracy has been the main focus of recent
developments in QA systems. Derici and associates. [10] proposed HazırCevap, a closed-domain QA framework that
retrieves answers from reliable educational resources while also utilizing multilingual support through translation.
Unlike open-domain QA systems, HazırCevap specifically caters to students by ensuring accuracy through a curated
knowledge base. However, it relies on document summarization rather than dynamic retrieval-augmented generation
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(RAG), which limits its ability to adapt to diverse and evolving queries. Our work extends this by leveraging RAG
to retrieve and generate answers in real-time, ensuring both accuracy and contextual relevance.

Retrieval-Augmented Generation (RAG) integrates parametric (pre-trained LLM) and non-parametric (retrieved
external data) memory to improve knowledge-intensive tasks [11]. The retrieval module locates relevant information,
while the generation module conditions on retrieved context to generate more factual responses. Such patterns of
work are observed in most RAG methods. In more detail, there are three main components: indexing, retrieval,
and generation. The retrieval module locates relevant information using dense or sparse search, while the generation
module integrates this context to produce an accurate response.

Despite the effectiveness of RAG in enhancing factual consistency, not all RAG models are well-suited for structured
data retrieval. Many existing implementations are optimized for unstructured text, where chunking strategies such
as RecursiveTextSplitter [12] or fixed-length segmentation are commonly employed. While these methods work well
for free-form documents, they introduce fragmentation issues when applied to structured datasets like university
Q&A tables. For instance, RAG implementations that rely on naive text chunking may separate a question from
its corresponding answer, leading to retrieval mismatches and incoherent responses. Furthermore, models such as
Hybrid-RAG [13] and ActiveRAG [14] attempt to improve retrieval by incorporating iterative refinement, but they
remain inefficient when handling structured data fields due to their reliance on unconstrained semantic search [15].

BM25, a probabilistic information retrieval model, ranks documents based on query terms but may not effectively
handle the nuances of structured data [16]. In contrast, our approach preserves the Q&A pair data by treating each
row as a single retrieval unit, ensuring accurate and contextually consistent responses.

While various RAG implementations focus on enhancing accuracy, retrieval mechanisms, and source attribution,
they do not consider structured Q&A pair data. Traditional RAG frameworks primarily process unstructured
documents, making them unsuitable for applications where preserving data relationships—such as university Q&A
datasets—is critical. Some studies focus on reducing contradictions in retrieved knowledge and self-reflecting on
results, improving reliability like SelfRAG [17], ActiveRAG [14], and InstructRAG [18].

However, these approaches do not address the challenges of structured data retrieval, particularly in handling
Q&A pair formats. While some works focus on structured or semi-structured data, they primarily target entity-
based retrieval, tabular knowledge representation THoRR [19], or knowledge graphs FastRAG [20], rather than
optimizing chunking strategies for structured text. Existing methods fail to consider how row-wise chunking can
preserve data integrity in structured datasets, such as university Q&A tables, where each row represents a complete
and independent knowledge unit.

III. Methods
In this study, we address the challenge of structured data retrieval in Retrieval-Augmented Generation (RAG)

systems by leveraging a university-specific Question-Answer (QA) dataset. Unlike traditional RAG models that
process unstructured text, our approach preserves the integrity of structured QA pairs, ensuring accurate and
contextually relevant responses.

A. Dataset
The dataset consists of approximately 20,000 QA pairs collected from university students. It covers a wide range

of university-related topics, including academic inquiries, student life, event details, club activities, and problem-
solving scenarios such as lost ID cards or course registration procedures. Since the dataset is user-generated, it
includes variations in phrasing, with some questions appearing in multiple interpretations or with additional details.
These variations enhance the model’s ability to retrieve contextually appropriate responses.

The dataset includes three languages: Kazakh, Russian, and English. Before training, the data underwent prepro-
cessing, including the removal of stopwords, conversion to lowercase, and other standard NLP cleaning techniques
to ensure consistency. Duplicate entries were filtered, while semantically similar but non-identical questions were
retained to improve retrieval diversity.
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B. Structured Retrieval and Chunking Strategy
Our RAG implementation deviates from traditional chunking methods, such as character-based, recursive, or

semantic splitting. Instead, given the structured nature of our dataset—comprising QA pairs—we treat each row of data
as an independent chunk. This ensures that the full context of each question-answer pair remains intact, preventing
the fragmentation issues commonly observed in unstructured chunking approaches. By maintaining complete QA
pairs as single retrieval units, we preserve the semantic integrity of responses, which positively impacts retrieval
accuracy.

After chunking, we proceed with embedding the data for vector-based retrieval. Since our dataset contains content
in three languages (Kazakh, Russian, and English), we employ a multilingual embedding model, intfloat/multilingual-
e5-large, which is widely adopted for cross-lingual tasks due to its strong performance across a broad range of
languages. This model was chosen for its balance between quality and efficiency, and because it has demonstrated
robust multilingual retrieval capabilities in both academic benchmarks and practical applications. Although we did
not conduct an independent embedding evaluation, we employ it because it is widely adopted for cross-lingual tasks
and performs strongly across languages.

For indexing, we utilize VectorStoreIndex, a widely used vector database approach that allows efficient similarity-
based retrieval. Each QA pair is stored as an embedding, enabling rapid lookup of semantically similar chunks during
the retrieval process.

During retrieval, an input question is first embedded using the same multilingual embedding model. The system
then computes the cosine similarity between the query embedding and all indexed QA pair embeddings, selecting
the top-K most relevant results. These retrieved QA pairs serve as context for the final answer generation, ensuring
that the response is based on the most semantically similar knowledge available.

1) Response Generation: For the response generation phase, we integrate OpenAI’s GPT-4o as the language
model. To ensure the model behaves as a university virtual assistant, we apply prompt engineering techniques. The
prompt includes:

• Zero-shot learning strategies to help the model generalize across diverse university-related queries.
• Background information about the university to provide institution-specific responses.
• Rules and regulations for handling specific student-related scenarios (e.g., lost ID cards, course registration

issues).

This carefully designed prompt ensures consistency in the responses and is used uniformly across all evaluated
methods to maintain fairness in comparisons.

The primary motivation behind our chunking strategy is to preserve the full context of each QA pair, avoiding the
fragmentation issues introduced by traditional chunking methods. Standard approaches such as RecursiveTextSplitter
segment documents based on arbitrary character or semantic boundaries, often leading to incomplete or disjointed
retrieval results. In contrast, our row-wise chunking ensures that each QA pair remains intact, providing a more
semantically meaningful retrieval unit.

Moreover, while semantic chunking techniques attempt to create contextually coherent splits, they often struggle
with multilingual datasets due to limitations in cross-lingual sentence embedding models. This challenge can lead
to poor retrieval performance when queries and indexed documents exist in different languages. In our study, we
will empirically compare the top-K retrieval performance metrics between our structured chunking method and
conventional approaches. Specifically, the top-K value will be set to 20. This will allow us to evaluate and demonstrate
the effectiveness of our method in enhancing retrieval accuracy and performance, particularly in the context of
university Q&A datasets.

C. Comparison with Traditional Chunking
To establish a meaningful comparison, we evaluate our structured row-based chunking method against the

conventional traditional chunking approach, which segments text into fixed-sized chunks or employs semantic split-
ting strategies. Traditional chunking methods, while widely used, often introduce inconsistencies by fragmenting
contextually related information, potentially leading to loss of coherence in retrieval tasks.

Since our dataset is inherently structured in a row-based format, a direct comparison requires adapting the
traditional chunking method to a relevant representation. For this, we approximate an unstructured document
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format through the conversion of the dataset to a continuous text-based QA format, approximating how data would
typically be retained in unstructured documents. This step takes care that both chunking methodologies are evaluated
on the same premises.

By presenting the dataset in this form, we are able to test how well the traditional methodology recovers useful
responses and preserves contextual coherence compared to our row-based method. By doing so, we are highlighting the
limitations of applying the traditional chunking method to structured data and comparing them with the advantages
of a retrieval-nominated chunking method.

IV. Results and Discussion
To evaluate the performance of proposed chunking method against the traditional approach of RAG, a small-

scale study was conducted involving 10 participants, comprising both students and teachers at SDU Univeristy.
Participants were asked a series of questions related to university life, operations, and logistics, in three languages:
English, Kazakh, and Russian. The primary goal was to test whether our chunking strategy—where each chunk is
a full Question-Answer (QA) pair—leads to more relevant and precise information retrieval compared to traditional
chunking, which segments the text arbitrarily or by fixed-length windows.

A total of 6 multilingual questions were used as test inputs:

1) What is EPT?
2) Потерял ID карту. Что мне делать?
3) СДУ университетiнде көлiк тұрағы бар ма? Егер бар болса, студенттер көлiктерiн қоя алады ма?
4) Өзiмнiң ағылшын деңгейiмдi қалай көрсем болады?
5) Что если у меня есть пересечения в расписании файналов?
6) Give me step-by-step instructions of how to get the book from the SDU library.

The results presented below highlight only the cases where there was a noticeable difference between the two
retrieval methods. In some cases, such as locating specific teacher offices or retrieving department-specific information,
both methods failed to retrieve a relevant answer, which indicates a lack of data coverage rather than method
inadequacy.

A. Traditional Methodology
User Request 1: What is EPT? [label=chunk1] Q: What is an EPT in SDU? A: English Proficiency Test: SDU offers
an English Proficiency Test (EPT) to assess students’ ... [56 words]

Q: SDU-да EPT дегенiмiз не? [7 words]
Q: Что такое олимпиада SPT? [7 words]
They also give grades for the task that were loaded. Q: What benefits and opportunities does SPT (Profile Testing

System) provide for school and college graduates? A: SPT — is a test that is conducted in the specialized subjects
of UNT for high school and college students... [90 words]

nursing homes, orphanages 3)marvel - Organizer 4)handmade - Craft Direction 5)cooking-cooking a variety of
meals together Q: What kind of race is SPT? A: SPT is a competition for 11th grade Students... [135 words]
User Request 2: Потерял ID карту. Что мне делать?

Q: Что делать если забыл ID карту? [9 words]
Q: Если я забыл дома свою ID карту, то как могу войти в универ? [16 words]
Q: В каких местах я могу использовать ID-карту? [9 words]
Q: Что будет, если студент потерял свою карту ID? Будет ли допуск на экзамены? [16 words]
Q: Если вы потеряли ID-карту, вы можете пойти в центр обслуживания студентов, чтобы создать ее... [132

words]
User Request 3: Сду университетiнде көлiк тұрағы барма? Егер бар болса студенттер көлiктерiн қоя аладыма?

Q: Салыныпты әлi бiлмесе, СДУ-да кеңселердi қалай табуға болады? A: Егер студент кабинеттi таба алмаса,
ол [17 words]

Q: Студенттер үшiн көлiк қандай нұсқалар бар? [9 words]
Q: Ата-анам маған көлiк сатып алды. Мен университеттiң тұрағына қоя аламын ба? A: SDU аумағындағы

автотұрақ Қызметкерлер мен қонақтарға арналған... [31 words]
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Q: Шегуге бола ма? A: Университет университет аумағында темекi шегуге немесе электронды құрылғыларды
[12 words]

Q: Ғимаратында не орналасқан? A: SDU Life ғимаратында студенттерге [6 words]

B. Row-Based Chunking Method
In contrast, the row-based chunking method significantly enhances retrieval by preserving complete question-

answer pairs:
User Request 1: What is EPT?

[label=chunk1] SDU offers an English Proficiency Test (EPT) to assess students’ English language skills. The test
is typically required for admission to English-medium programs or for students seeking exemptions from English
language courses. It evaluates ... the test if needed. Additionally, SDU may offer English language clubs or resources
to help students improve their language skills and prepare for the EPT. [76 words] ‘

What is an English proficiency test? It’s an exam to take for an exchange program. [9 words]
SPT is a competition for 11th grade students. Through the competition, you can win an internal grant. Even on

the day you don’t win, you will be given a discount on paid education. At first, the competition will be based on
math literacy, and then you will pass it according to your professional subject. [44 words]

When students apply to the university, they need to take an English test to see how well they know the language.
There are two parts to the test: 1) Grammar test: consists of 50 questions; 2) A speaking part ... If a student’s
English level is below that, they’ll have to pay for courses to improve it. Currently, each level costs 102,000 KZT.
[91 words]

Typically, 1 ECTS is equal to 25-30 hours. This is an indicator of the value of the course. [20 words]
User Request 2: Потерял ID карту. Что мне делать?

Что делать если забыл ID карту? [9 words]
Сначала нужно оповестить эдвайзера и сделать запрос на восстановление ID карты. [16 words]
Студентам необходимо посетить сервисный центр. [7 words]
Вам следует обратиться эдвайзеру, через некоторое время вам выдадут новую. [15 words]
ID-карта, центр обслуживания студентов, QR-код, 2000 тенге. [8 words]

User Request 3: Сду университетiнде көлiк тұрағы барма? Егер бар болса студенттер көлiктерiн қоя аладыма?
Университетте көлiк тұрағы бар, университеттiң ауласында орналасқан. Өкiнiшке орай студенттер көлiктерiн

қоя алмайды. Только преподавателям разрешается парковать свои автомобили. [33 words]
Иә, SDU университетiнiң ауласында көлiк тұрағы бар. Бiрақ та студенттер ол көлiк тұрағын қолдана

алмайды. Тұрақ мұғалiмдерге арналған. [22 words]
SDU аумағындағы автотұрақ қызметкерлер мен қонақтарға арналған. Студенттер оған көлiктерiн қалдыра

алмайды. [18 words]
Өкiнiшке орай, егер сiз университет қызметкерi болмасаңыз, университет аумақтарына көлiк қоя алмайсыз.

Бiрақ сiз көлiгiңiздi университеттiң жанында арнайы тұрақ орындарына қоя аласыз. [27 words]
Иә, биыл тегiн. [5 words]
As shown above, the row-based chunking method proves to be more effective in retrieving relevant information

aligned with user queries. By maintaining the integrity of each question-answer pair, it allows the retriever to surface
more meaningful and contextually complete results.

C. Generation
The next step in the pipeline is generation, where the impact of the input format becomes even more evident.

Below, we compare the responses generated by the language model using the two different retrieval inputs: Traditional
Chunking [T] and Row-Based Chunking [R].
Question 1

Q: What is EPT? Response [T]: EPT is the English Proficiency Test offered to assess students’ English language
skills. It is typically required for admission to English-medium programs or for students seeking exemptions from
English language courses. The test evaluates proficiency in listening, reading, writing, and speaking. Response [R]:
The English Proficiency Test (EPT) at SDU is designed to assess students’ English language skills. It is typically
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required for admission to English-medium programs or for students seeking exemptions from English language courses.
The test evaluates proficiency in listening, reading, writing, and speaking. Students can register for the test through
the university’s website or designated testing centers. The format may include multiple-choice questions, writing
essays, and oral interviews. Results are usually available within a specified timeframe, and students may have the
opportunity to retake the test if needed. Additionally, SDU may offer English language clubs or resources to help
students improve their language skills and prepare for the EPT. The test consists of two parts: a grammar test
with 50 questions and a speaking part where an examiner asks questions on random topics to evaluate the student’s
English level. After the test, students receive a certificate indicating their English level. Most study programs require
at least a B1 level. If a student’s English level is below that, they will need to pay for courses to improve it, with
each level costing 102,000 KZT.
Question 2

Q: Потерял ID карту. Что мне делать? Response [T]: Если вы потеряли ID карту, вам следует обратиться
в Центр обслуживания студентов, чтобы запросить изготовление новой карты. Это будет стоить 2000 тенге,
и процесс может занять некоторое время, так как карты изготавливаются партиями. Response [R]: Если
вы потеряли ID карту в SDU, выполните следующие шаги: 1. Свяжитесь с консультантом (Advising Desk) и
сообщите о потере карты. 2. Оплатите штраф за утерю карты, который составляет 2000 тенге. Оплату можно
произвести через Kaspi QR или Halyk Bank. 3. Заполните форму через QR-код. 4. Когда карта будет готова,
вам сообщат об этом по электронной почте. 5. Также вы можете обратиться в Студенческий сервисный центр
(Student Service Center) для получения новой карты. Учтите, что карты изготавливаются партиями, и процесс
может занять до двух недель.
Question 3: Сду университетiнде көлiк тұрағы барма?

Q: Сду университетiнде көлiк тұрағы барма? Егер бар болса студенттер көлiктерiн қоя аладыма? Response
[T]: СДУ аумағындағы автотұрақ қызметкерлер мен қонақтарға арналған, сондықтан студенттер көлiктерiн ол
жерге қоя алмайды. Алайда, СДУ аумағына жақын жерде көптеген тегiн тұрақ орындары бар. Response [R]:
Иә, SDU университетiнде көлiк тұрағы бар, ол университеттiң ауласында орналасқан. Алайда, өкiнiшке орай,
студенттерге бұл көлiк тұрағын қолдануға рұқсат жоқ. Тұрақ тек мұғалiмдер мен қызметкерлерге арналған.
Студенттер көлiктерiн университеттiң жанында арнайы тұрақ орындарына қоя алады. Бұрын студенттерге
SDU iшiнде тұрақ қоюға рұқсат етiлген, бiрақ орын тапшылығына байланысты уақытша тыйым салынды.
Жақында жаңа блок ашылғанда, тұрақ қолжетiмдi болуы мүмкiн.
Question 4: Өзiмнiң ағылшын деңгейiмдi қалай көрсем болады?

Q: Өзiмнiң ағылшын деңгейiмдi қалай көрсем болады? Response [T]: Өзiңiздiң ағылшын деңгейiңiздi көру
үшiн oldmy.sdu.edu.kz парақшасына кiрiп, негiзгi беттегi негiзгi ақпарат бөлiмiнен ағылшын деңгейi туралы
ақпаратты таба аласыз. Сiздiң ағылшын деңгейiңiз сол бетте көрсетулi болады. Response [R]: Өз ағылшын
деңгейiңiздi көру үшiн oldmy.sdu.edu.kz парақшасына кiрiп, негiзгi бетке өту арқылы негiзгi ақпараттың iшiнен
ағылшын деңгейi туралы ақпаратты көре аласыз. Сiздiң ағылшын деңгейiңiз сол бетте көрсетулi.
Question 5: Что если у меня есть пересечения в расписании файналов?

Q: Что если у меня есть пересечения в расписании файналов? Response [T]: Вам следует обратиться к
вашему эдвайзеру, который может перенести один из экзаменов на другой день, чтобы устранить конфликт
в расписании. Response [R]: Если у вас есть пересечения в расписании файналов, вам следует предпринять
следующие шаги: 1. Обратитесь к вашему эдвайзеру, чтобы обсудить проблему. 2. Вместе с эдвайзером посетите
деканат и напишите заявление о пересечении времени экзаменов. 3. Деканат рассмотрит ваше заявление и
обсудит возможность изменения времени одного из экзаменов. 4. Если студентов с такой проблемой немного,
для вас могут выделить отдельное время для сдачи экзамена с участием учителя и прокторов. 5. В некоторых
случаях может потребоваться заполнение специальной формы и предоставление доказательств пересечения
времени экзаменов. 6. Также можно обратиться в MDE центр в университете для назначения другого дня
сдачи экзамена или сдачи с другой группой, но это нужно сделать заранее.
Question 6: Give me step by step instructions of how to get the book from the SDU library.

Q: Give me step by step instructions of how to get the book from the SDU library. Response [T]: To get a book
from the SDU library, follow these steps: 1. Visit the SDU library website. 2. Use the search function to find the book
you want by entering the book’s name and author. 3. Check the availability status of the book. If it’s available, note
the location details such as the floor and key letters. 4. Go to the library with your ID card. 5. Locate the book using
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the information you noted. 6. Use your ID card to check out the book at the library’s checkout desk. Response
[R]: To get a book from the SDU library, follow these step-by-step instructions: 1. Visit the SDU Library: Go to the
SDU library, which is a 3-story building located on the university campus. 2. Find the Book: You can either search
for the book online on the SDU library website or physically browse the library shelves. If searching online, enter
the book’s name and author in the search bar to check its availability and location within the library. 3. Locate the
Book: If the book is available, note the floor and section where it is located. Use the key letters provided to find the
exact shelf. 4. Borrow the Book: Once you have the book, go to the librarian or a consultant at the library. Present
your student ID card to the librarian. This is necessary to borrow the book. 5. Discuss the Borrowing Period: Talk
to the librarian or consultant about how long you wish to borrow the book. Typically, books can be borrowed for a
period of 3 weeks. 6. Take the Book Home: After the librarian processes your request, you can take the book home.
Remember, you can borrow up to five books at a time. 7. Return the Book: Ensure you return the book by the due
date to avoid fines. If you lose the book, you will need to pay a fine or replace it.

D. Evaluation
Apart from retrieval and generation measures, a human test was conducted to study the quality and usability of

the assistant’s responses. This test focused on the way users felt about the accuracy, relevance, and usefulness of the
answers they received.

1) Participants: The evaluation involved approximately 50 participants, comprising both students and staff
members from various departments within the university. It is important to note that this survey is distinct from
an earlier preliminary survey, which involved 10 participants. The initial survey was conducted to collect user-asked
questions and evaluate the quality of LLM-provided answers based on a chunking strategy approach. In contrast, the
current survey focuses on a comparative evaluation of two different approaches—traditional chunking and row-based
chunking—using a structured set of evaluation criteria.

2) Manual Evaluation: A manual evaluation was performed to assess the virtual assistant’s capabilities.

TABLE I
Structured Evaluation Approach for AI-Generated Responses

No. Evaluation Question Grading Method
1 Did the prediction contain any hallucinations? Binary response: Yes or No
2 Assess the relevance of the response to the question. Rating scale: 1 to 5
3 Evaluate the content size and structure of the response. Rating scale: 1 to 5
4 Did you identify any logical inconsistencies in the response? Binary response: Yes or No
5 What is your overall evaluation of the responses? Rating scale: 1 to 5

Table I. presents a structured approach to the quality assessment of AI responses. It contains both binary (Yes/No)
tests and scaled ratings (1 to 5) to ensure a complete analysis.

• Binary questions help identify significant issues such as hallucinations (false or misleading information) and
fallacies.

• Rating questions allow for a finer-grained assessment of aspects like relevance, content structure, and overall
quality.

These evaluation criteria can be used to score a single answer or to compare several answers from an AI system.
When comparing, the more accurate, coherent, and complete answer is scored higher. This systematic process makes
AI-generated answers factually correct, logically sound, and well-organized, thus making them credible and useful
sources of information for users.

Both virtual assistants’ (R and T) performance on five criteria in evaluation is plotted above. The results were
divided into two parts depending on their evaluation method: Binary and Scaled evaluations. The Row-Based
Chunking RAG (R) does better than the Traditional Chunking RAG (T) on the most important ones.

Figure 1 presents the binary evaluation results.
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• Avoidance of hallucination (Q1): R performed better due to improved chunking, which positively impacted the
generation phase.

• Logical consistency (Q4): Both approaches maintained strong logical consistency in their responses.

Fig. 1. Binary evaluation results for virtual assistants R and T across two criteria: hallucination avoidance (Q1)
and logical consistency (Q4).

Also the Figure 2 shows the scaled evaluation results.

• Response relevance (Q2): R had a higher relevance score.
• Content size and structure (Q3): R was rated more positively than T.
• Overall evaluation (Q5): R scored higher than T, indicating better overall quality of response.
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Fig. 2. Scaled evaluation results for virtual assistants R and T across three criteria: response relevance (Q2), content
size and structure (Q3), and overall evaluation (Q5).

The no-response rates for each assistant are visualized in Figure 3:

• R had a 9.1% no-response rate.
• T had a 14.3% no-response rate.

This data indicates that R provided responses more frequently than T when evaluated across multiple queries.

E. Evaluation Metrics
We applied our row-based chunking method to a collection of 50 queries collected in a user study. As was mentioned

before, every one of the 50 volunteers asked 3 different questions but we took 1 from each and which was tackled by
two distinct RAG systems: one with traditional chunking and the other with our row-based chunking method. For
each question, we retrieved top-k chunks from both the systems and manually judged their relevance to the question
context.

Based on this human-judgment, Precision@k, Recall@k, and F1@k values were computed and compared with
returned chunks versus information needed to answer each query. On k=10, our row-based model achieved Precision
of 0.58, Recall of 0.67, and F1 score of 0.62, which was considerably higher than the baseline paragraph-based
scheme (Precision@10 = 0.41, Recall@10 = 0.44, F1@10 = 0.42). The outcomes indicate that chunk alignment
with semantically similar rows within structured data leads to more accurate and comprehensive retrieval, which
ultimately improves answer quality in RAG systems.

F. Discussion
These results reinforce the central significance of chunking strategies to retrieval performance, elucidating why

distinct methods yield varied outcomes. Standard chunking practices have a propensity to cause incoherences by
disunifying contextually coherent information, whereas Row-Based Chunking RAG preserves total context units.
This is specifically beneficial for structured information, such as FAQs, where coherence should be preserved so that
correct retrieval can be supported.
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Fig. 3. No-response rates for virtual assistants R and T.

One key thing to note is that if Row-Based Chunking RAG retrieval fails, Traditional Chunking RAG will also
fail. But not vice versa—Row-Based Chunking RAG can pass when Traditional Chunking RAG fails. This is due
to the fact that traditional chunking techniques sometimes dismember logically related information, and retrieval
models struggle more to generate effective responses from them. Such findings suggest that for structured datasets,
Row-Based Chunking RAG provides a more solid and context-aware solution.

The evaluation also indicates that Row-Based Chunking RAG always produces more structured and richer answers
than Traditional Chunking RAG. This is because of the following reasons:

• Preservation of context: Row-Based Chunking RAG retains full rows as single chunks, ensuring more cohesive
retrieval.

• Reduced fragmentation: Traditional Chunking RAG sometimes splits related information into multiple smaller
chunks, leading to a loss of coherence in responses.

The no-response rate difference reinforces these findings. While both methods fail in some cases, Row-Based
Chunking RAG consistently outperforms Traditional Chunking RAG in retrieving relevant content. This suggests
that inefficient chunking in Traditional Chunking RAG contributes to response failures, whereas Row-Based Chunking
RAG’s structured approach improves retrieval even in challenging cases.

G. Implications
The findings we obtained can be implemented in such structured data QA systems. For RAG systems, choosing

an effective chunking strategy is crucial to enhance the response relevance. It can be applied in domains where
structured knowledge is key—such as academic assistants, customer support bots, or legal document retrieval—Row-
Based Chunking RAG could enhance accuracy and reduce hallucinations.

H. Limitations and Future Considerations
The advantages of our Row-Based Chunking RAG are most noticeable in structured datasets, even if it increases

retrieval effectiveness. It’s still unclear how well it performs in texts that are more narrative or unstructured.
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Furthermore, even though Row-Based Chunking RAG performs better than Traditional Chunking RAG in our
evaluation, more study is required to determine whether it can scale to bigger and more varied datasets. Hybrid
techniques that dynamically modify chunking algorithms according to query context should also be investigated in
future work.

In the end, our findings emphasize how crucial careful data architecture is for retrieval-based AI systems, confirming
that the quality of generated responses can be greatly impacted by the way information is chunked.

V. Conclusion and Future Work
This paper investigated the impact of chunking methods on retrieval performance on an academic Q&A dataset.

Our results show that Row-Based Chunking significantly improves response completeness and coherence over tradi-
tional chunking methods. Through retaining the full context units, this approach reduces inconsistency and improves
retrieval accuracy, particularly for structured data such as FAQs.

In addition, the study highlights the point that traditional chunking often leads to disconnected responses due
to random text splitting. In contrast, Row-Based Chunking is logically consistent, which allows for more effective
retrieval of semantic information. The aspect that it possesses a lower no-response rate also bears witness to its
application in structured data retrieval.

However, despite these developments, some of the limitations still remain, including the scope of our evaluation and
the challenge of handling unstructured or multilingual data. Future research can explore hybrid chunking methods
that adapt dynamically to different types of data and retrieval needs. The integration of user feedback and real-world
testing will also help in advancing the practical applicability of structured chunking RAG systems.

Our findings enhance knowledge on chunking techniques in information searching, offering a yet more systematic
and effective approach to be applied in university virtual assistants and further beyond.
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Abstract

This paper reviews cognitive radio Spectrum sensing (SS) techniques. With increasing demand for
wireless spectrum resources cognitive radio (CR), there is a lack of spectrum resources due to the fixed
use policy. The idea of cognitive radio (CR) networks has been the subject of numerous research works as
a way of utilizing spectrum resources efficiently. Spectrum sensing (SS) techniques have been proposed,
and various effective spectrum utilization methods have been developed. Deep learning techniques have
outperformed conventional methods for Spectrum sensing (SS). high demand for wireless communicationsA
review and comparison of the merits and drawbacks of each technique are given. A description of the use
of deep learning techniques in Spectrum sensing (SS) is given next. Lastly, the challenges of deep learning
techniques and potential areas of future research are reviewed.

Keywords: cognitive radio (CR), Spectrum sensing (SS), deep learning (DL), machine learning (ML), and Deep Spectrum
Sensing (UDSS).

I. INTRODUCTION

By the year 2028, mobile subscribers will grow to 9.2 billion from 8.4 billion in the year 2022, according to recent studies. This
ultimately results in a lack of spectrum resources. Advanced management strategies are required to alleviate the spectrum shortage
[1]. It has been achievable to enhance the efficiency of spectrum utilization by means of Cognitive Radio (CR) technology. One of
its key tasks is Spectrum Sensing (SS) [2]. Spectrum sensing (SS) has shown huge potential with the latest developments in CR
and Deep Learning (DL). DL algorithms have been more efficient compared to conventional methods and have been successfully
applied to improve Spectrum sensing (SS) in CR networks [3]. Apart from addressing wireless technology identification, particularly
for 5G and Internet of Things (IoT) applications, these methods were originally intended for modulation recognition [4]. Wireless
communication combined with DL techniques is a significant area of research [3]. Irrespective of the existing progress, to advance
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Fig. 1. Figure 1. Main components of the CR network

precision and efficiency under difficult scenarios, some problems still require more research [5]. Individual countries presently
manage and allocate spectrum resources. For example, spectrum allocation and management is the responsibility of the Federal
Communications Commission in the United States, but China’s National Radio Administration. In our nation, the state has the
authority to govern the radio frequency spectrum as well as the orbital locations of communication satellites. An overview of recent
research activities dedicated to the implementation of deep learning techniques to Spectrum sensing (SS) is the intention of this
article.

Figure 1 illustrates the essential components that constitute a cognitive radio system, each playing a pivotal role in its overall
functionality and adaptability. The primary component is the reconfigurable radio element, which serves as the foundation of the
system’s operational capabilities. This component is designed to be highly flexible, enabling adjustments to various parameters,
including operating frequency, bandwidth, and multiple other technical specifications. The reconfigurability of the radio component
is crucial for efficient spectrum utilization, allowing the system to dynamically adapt to varying communication requirements and
environmental conditions. In conjunction with the radio component, the system must incorporate a detection module. This module is
integral to the cognitive radio’s ability to perceive its operational environment. It is responsible for capturing and processing signals
from the radio components, thereby facilitating the identification of available spectrum opportunities. The effectiveness of this
detection module is critical, as it directly influences the system’s ability to make informed decisions regarding spectrum access and
allocation. Another fundamental aspect of the cognitive radio system is the policy database. This database functions as a repository
of rules and guidelines that govern the system’s operational decisions. It determines the appropriateness of specific actions based on
contextual factors, such as current spectrum availability and regulatory constraints. Moreover, the ability to modify and update this
database is essential, as it allows the system to remain responsive to changing conditions and user requirements, thereby enhancing
its operational efficacy. Additionally, the system must include a logical module that processes input data derived from the detection
module and interacts with the policy database. This module is tasked with analyzing the information it receives and determining
the optimal configuration for the radio components in real time. It acts as the decision-making hub of the system, ensuring that
the actions taken align with the established policies. A crucial feature of the logical module is its capacity for experience-based
learning. This capability enables the system to learn from past interactions and outcomes, allowing it to refine its decision-making
processes over time. By incorporating machine learning techniques, the logical module can enhance its predictive accuracy and
operational performance, adapting to new challenges and optimizing spectrum utilization. Lastly, the configuration database is an
essential component that maintains the current settings of the radio components. It ensures that the system operates within the
parameters defined by the logical module and facilitates the implementation of any changes to the configuration as required. This
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ongoing maintenance of configuration integrity is vital for the stability and reliability of the cognitive radio system. In summary,
the interplay among these components—reconfigurable radio elements, detection modules, policy databases, logical modules with
learning capabilities, and configuration databases—forms a cohesive and adaptive cognitive radio system. This architecture enables
the system to effectively navigate dynamic communication environments, optimize spectrum usage, and fulfill the diverse needs of
users in real-time scenarios.The main role of Spectrum sensing (SS) is carried out by making a decision between detecting two
different states of the channel. It is the state where H0 - channel can be empty, usable, and H1 - channel busy. Spectrum sensing (SS)
continuously monitors the spectrum of the licensed user (PU) to find available spectrum resources. The decision-making, allocation
of the sensed available spectrum, and other operations are carried out only when the channel is in the empty state. This process is
crucial for adapting the communication parameters to the surrounding radio environment, and ultimately, it improves the efficiency
and use of the available spectrum. Thus, improvement in the accuracy of Spectrum sensing (SS) in its effective utilization. Figure
2 shows the fundamental working principles of the Spectrum sensing (SS) process.

II. METHODS

The traditional methods of Spectrum sensing (SS) are as follows: Energy Detection (ED), Matched Filtering Detection (MFD),
Cyclostationary Detection (CFD), Eigenvalue-Based Detection (EBD), Covariance-Based Detection (CBD), and Waveform Detection
(WD) [9-14]. In the last decade, these methods have been categorized into two general classes: narrowband and wideband sensing
methods, each appropriate to different bandwidth requirements [10]. Energy detection is suitable because of its low complexity
and low requirement for prior knowledge but is less efficient in distinguishing between signal and noise at low Signal-to-Noise
Ratio (SNR). Detection based on identifying signal features using the cyclostationary method, however, enhances resistance to
noise by using cyclic autocorrelation analysis but requires more samples and increases the Spectrum sensing (SS) time. Matched
filtering detection is based on comparing received samples with stored signal patterns, which enhances performance but requires prior
knowledge of signal features in a dynamic environment. Predefining such features in a dynamic environment could be problematic.
While energy detection is the most prevalent, matched filtering detection theoretically guarantees high performance in additive white
Gaussian noise channels, whereas cyclostationary detection exploits the frequency of modulated signals to enhance detection. SS
traditional methods can be categorized as probability-based and feature-based. Theoretically optimal approaches are probability-based
but require computation, while feature-based approaches prefer to utilize manually crafted features that require expert experience
[9,12,14,15]. Spectrum sensing (SS) methods can also be categorized based on the number of nodes utilized for detection: single-node
spectrum sensing and cooperative spectrum sensing [11]. In single-node spectrum sensing, data is gathered and examined from one
special device. In cooperative spectrum sensing, several devices gather data about the radio environment for sensing shared spectrum
resources. Traditional spectral recognition methods have a number of disadvantages that may limit their effectiveness. Firstly, they
exhibit high sensitivity to noise, which can lead to a decrease in recognition accuracy in the presence of interference. In addition,
these methods often require data preprocessing, which increases the time and complexity of the work. When processing large amounts
of data, traditional algorithms can experience difficulties, especially in real-time conditions. They also have limited adaptability to
different types of spectra and changing conditions, which makes them difficult to adjust. In the context of multidimensional data,
traditional methods may be ineffective, which limits their use in complex tasks. Finally, to achieve high recognition accuracy, a
significant amount of training data is often required, which may not be available in some cases. These shortcomings highlight the
need to move towards more modern approaches such as machine learning methods that are more flexible and efficient. In general,
traditional methods of determining the spectrum face problems such as a high frequency of false alarms, which leads to an erroneous
determination of the activity of primary users in the absence of a signal, that is, the system may mistakenly determine the user’s
activity when the spectrum is free. They are also sensitive to noise, which reduces accuracy in low SNR conditions, and detection
accuracy drops significantly in urban or industrial areas. In addition, in the context of 5G/6G, dynamic environments complicate
the adaptation of such methods, as they require prior knowledge of the signal, which is ineffective with uncertainty. In the context
of 5G/6G, these problems are increasing: the lack of spectrum due to the growing number of devices, the available spectrum is
becoming limited. Static distribution does not adapt to dynamic conditions, fixed distribution schemes lead to unused parts of the
spectrum, and traditional methods are ineffective at high load. Coordination between users becomes more complicated: in 5G/6G,
the interaction of SU and PU requires complex algorithms, but traditional approaches do not provide adaptability.

As can be seen from the table, traditional methods are inferior in accuracy and noise resistance. For example, ED suffers from
a high false positive rate in low SNR environments, while deep learning shows high accuracy even in dynamic environments. This
confirms the need to switch to adaptive algorithms for 5G/6G, where the requirements for spectrum and data processing speed are
critically high. The majority of the recent studies in this field have utilized deep learning methods for Spectrum sensing (SS) and
proposed several techniques. These studies have been demonstrating the superiority of spectrum detection algorithms that are based
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TABLE I
TABLE 1. COMPARATIVE ANALYSIS OF METHODS

method accuracy frequency of false alarm computational costs
ED Low High Low
MFD Average Medium High
CBD Average Low Very high
Deep learning High Low High(adaptive)

on deep learning compared to traditional approaches. Moreover, we will explore the key techniques proposed in these studies and
compare their strengths and weaknesses. Table 2 displays modern research using deep learning methods in Spectrum sensing (SS).

TABLE II
TABLE 2. MODERN RESEARCH UTILIZING DEEP LEARNING METHODS IN SPECTRUM SENSING

Research methods advantages limitations
[6] D3QN • improved performance • requires significant computing resources

• stability • depends on the availability of sufficient data
• reduction of revaluation volume and quality

• requires a careful approach to implementation
and configuration

[8] CNN • the ability to extract complex features • requires significant computing resources
• improved performance • requires preliminary training

• requires a large amount of training data
[16] CNN-RNN • improved detection • requires a lot of training data

• of low false alarm probability (Pf) values • noise sensitivity
• Transfer Learning • requires significant computing resources

[17] SSDNN • comparatively high accuracy • lack of marked-up data
[18] DetectNet • no need for additional information • dependence on the signal structure

• high performance • lack of precise performance control
[19] CNN-LSTM • combined feature extraction • dependence on data quality

• avoiding information loss • model complexity
• the need for a large amount of data

[20] DCS • autonomous learning • requires a lot of training data
• accounting for correlations • depending on the initial conditions
• flexibility

[22] UDSS • data collected in the absence of primary • difficulty of setting up
user signals
• good performance

The majority of the recent studies in this field have utilized deep learning methods for Spectrum Sensing and proposed several
techniques. These studies have been demonstrating the superiority of spectrum detection algorithms that are based on deep learning
compared to traditional approaches. Moreover, we will explore the key techniques proposed in these studies and compare their
strengths and weaknesses. Table 2 displays modern research using deep learning methods in Spectrum Sensing.

III. RESULTS

The CNN method uses cascading multi-channel convolutions with residual connections to sense the presence of primary users’
spectrum [8]. By using CNN and RNN methods, spatial and temporal features of signals can be extracted, leading to improved
signal recognition quality. This method entails data preparation, choosing parts of the signals to train, and fine-tuning the model. The
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method also prevents overfitting [16]. The Dueling Double Deep Q-Network (D3QN) methodology incorporates the double learning
system and the double Q-learning methodology that improves the algorithm’s performance and stability [6]. Most effective under the
multiray fading and other Gaussian interference conditions most effective deep neural network methodology with semisupervision
(SSDNN). It was suggested because labeled samples are difficult to obtain under practical radio communication conditions. The
methodology learns the characteristics of the signals with few labeled samples and uses unlabeled samples to self-train with high-
confidence instances labeled with synthetic labels to increase the volume of data. SSDNN obtained promising results with detection
probability over 90% with high SNR and a limited volume of labeled data [17]. The DetectNet approach uses the architecture
of convolutional long-term deep neural networks (CLDNN). It does not require knowledge of the source signals or noise density,
which makes it suitable for use in cognitive radio communication systems [18]. The CNN-LSTM method is a combination of CNN
to isolate spatial and LSTM to isolate temporal features of a signal, which makes it more efficient at processing information from
received signals. It has demonstrated higher performance compared to traditional single-node methods, especially in conditions of
low signal-to-noise ratio (SNR), with a detection probability of approximately 98.64% during training [19]. The deep cooperative
sensing (DCS) method is based on the use of convolutional neural networks (CNNs) to combine the results of individual Spectrum
sensing (SS) by several secondary users into a cognitive radio network [20]. The Graph neural network and the GNN reinforcement
learning method are aimed at optimizing energy efficiency in distributed collaborative Spectrum sensing (SS) for cognitive radio
networks [21]. The Unsupervised Deep Spectrum Sensing (UDSS) method is based on a Variational AutoEncoder (VAE) and deep
clustering analysis [22]. Therefore, deep learning methods for Spectrum sensing (SS) achieve significant advantages, including high
accuracy and performance in spectrum detection. However, they also present various limitations that must be solved and tackled.
Notable limitations include the need for vast computational resources and huge training data. For instance, the CNN-RNN model,
via transfer learning, has significantly enhanced spectrum detection in CR with low complexity while evading the limitations of
traditional methods. Thus, Spectrum sensing (SS) methods are evolving at a rapid rate, with traditional methods being complemented
and increasingly replaced by advanced machine learning and deep learning methods, which enhance detection accuracy as well
as operational efficiency in cognitive radio systems. Modeling the behavior of cognitive data networks, particularly in wireless
systems, is extremely difficult. Key factors include the number of devices, e.g., IoT devices, the type of applications such as smart
environments, and the heterogeneity of transmission technologies. Nonlinearity and complexity of the data traffic with temporal
and spatial correlations complicate the analysis and prediction of such networks even further [11]. Deep learning (DL) methods
are becoming increasingly popular in spectral sensing (SS), however, the limited availability of large radio frequency datasets has
become a key factor that hinders the effective use of DL algorithms in SS. Most of the listed methods require huge amounts of
data for model training, validation, and testing. In addition, requirements such as labeling of datasets, computational complexity,
and the risks of retrofitting have also become constraints that make it difficult to apply the methods. As a result, the implementation
of models in real time involves the use of highly specialized equipment, while the adaptation of algorithms to dynamic situations
remains an open question [7].

A. Discussion
Current research indicates that the increasing number of mobile users causes a shortage of radio frequency spectrum. This calls

for the evolution of new spectrum management techniques where cognitive radio (CR) techniques are starting to take center stage.
Cognitive radio makes it possible for secondary users (SUs) to employ free frequency bands that are unused by primary users (PU).
The primary role played by CR is the spectrum definition (SS) process that makes the use of free frequency bands possible in real
time. The recent breakthroughs in deep learning (DL) opened new doors to enhancing the efficiency of the Spectrum sensing (SS).
The use of algorithms like the convolutional neural networks (CNN) and the recurrent neural networks (RNN) indicates that there are
tremendous advantages over the conventional techniques like the use of energy detection (ED) and cyclostationary detection (CFD).
The conventional techniques are limited to low efficiency under low SNR conditions and the need to use prior knowledge about the
signals. The use of deep learning enhances the precision and the speed of speech recognition because there is the capability to adapt
to dynamics. For instance, techniques like Dueling Double Deep Q-Network (D3QN) and Semi-Supervised Deep Neural Network
(SSDNN) indicate superior performance with a detection rate of more than 90%, even under noisy conditions. The techniques are
free from the need to use knowledge about the signals and are efficient to use both the labeled and the unlabeled data to train.
Nevertheless, despite the noticeable progress in deep learning methods, there are problems that require further study and solution.
These include the need to improve detection efficiency in difficult conditions such as high signal density and the presence of
obstacles. In addition, the reliability and adaptability of algorithms to the changing conditions of the radio frequency spectrum are
critical factors for creating reliable and effective cognitive radio communication systems. Thus, the use of deep learning methods

Received: March 6, 2025. Reviewed: March 20, 2025. Accepted: March 26, 2025. © 2025 Aizhan Utepova, Nurzhigit Smailov,
Pawel Komada. All rights reserved.



79 Journal of Emerging Technologies and Computing (JETC), Vol. 1 No. 1 (2025)

in spectrum recognition processes is considered as a valid and promising research area that can contribute to more efficient use of
limited radio frequency resources in the context of growing demand for wireless services.

IV. CONCLUSION

Current research confirms that using deep learning techniques to determine the spectrum opens up new possibilities for cognitive
radio networks, especially in 5G/6G environments. Traditional methods suffer from a high false alarm rate and an inability to adapt
to dynamic environments. In contrast, deep learning demonstrates high detection accuracy and noise tolerance, which is critically
important for effective spectrum management in the face of an increasing number of devices and a shortage of frequency resources.
The priority areas for modern methods are data processing speed, energy efficiency, and adaptability. However, the successful
implementation of such solutions requires a balance between computational complexity and accuracy. As the article highlights, the
integration of deep learning into 5G/6G systems will not only improve spectrum allocation, but also provide scalability to support
the IoT. Adapting methods to specific scenarios, such as urban environments with high levels of interference or industrial networks
with high latency requirements, remains a key factor.
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Abstract

This article study the influence of external environmental factors — namely ambient illumination,
surface reflectivity, and incidence angle — on the measurement accuracy of the TF-Luna LiDAR sensor. A
computational simulation model was developed to evaluate sensor performance under varying conditions
using a synthetic data approach. The model incorporates Lambertian reflection and a noise function
dependent on lighting intensity. Simulations were conducted across a range of illuminance values (0–70,000
lux), reflectivity levels (0.1–0.9), and incidence angles (0°–75°). Results show that at high illumination
levels (over 20,000 lux), the mean distance error increases from below 2 cm to over 6 cm, with dropout
rates exceeding 15% for low-reflective surfaces. For reflectivity values below 0.3 and angles above 60◦,
error rates exceeded 7 cm and dropouts surpassed 20%. The study defines a stable operational region
where TF-Luna maintains sub-centimeter accuracy: illumination < 10,000 lux, reflectivity > 0.5, and
angle < 45◦. These findings provide a practical basis for evaluating the sensor’s reliability in outdoor and
robotics applications.

Keywords: LiDAR, TF-Luna, ambient light, reflectivity, angle of incidence, modeling, measurement accuracy.

I. INTRODUCTION

LiDAR (Light Detection and Ranging) systems are widely used in modern robotic platforms, autonomous navigation, and non-
contact environmental sensing due to their ability to provide accurate and real-time distance measurements. Compact and low-cost
sensors such as the TFmini, TFmini-S, and TF-Luna, developed by Benewake, have become increasingly popular in applications
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where size, weight, and power consumption are critical. Among them, TF-Luna sensor provides a reading range of up to 8 meters,
with a sampling capacity of up to 250 Hz, for applications including mobile robotics, as well as obstacle detection [1].

While several experimental studies have addressed the general sensitivity of LiDAR systems to environmental changes, they
typically focus on single-factor analysis without systematically quantifying the combined influence of illumination, surface properties,
and incidence angle. Moreover, most practical evaluations are based on specific case studies under limited environmental conditions,
making it difficult to extrapolate the findings to broader operational scenarios.

Mathematical modeling offers a distinct advantage by enabling controlled, repeatable, and scalable experiments. Using a simulation
framework, it becomes possible to vary one parameter at a time or in combination with others, thus revealing complex interde-
pendencies and thresholds beyond which sensor performance degrades significantly. Such an approach not only saves considerable
experimental effort but also allows fine-grained sensitivity analyses that are otherwise impractical in field tests.

Despite the inherent robustness of TF-Luna in many applications, its reliance on optical signal reflection renders it vulnerable
to unpredictable external perturbations. In particular, high ambient illumination—such as direct sunlight—can flood the sensor’s
receiver with background noise, masking the relatively weak return signal. Similarly, low-reflectivity targets absorb most of the
emitted infrared pulse, yielding insufficient backscattering for accurate ranging. Furthermore, the angle between the sensor’s optical
axis and the target surface critically determines the effective cross-section for reflected light. At steep incidence angles, even highly
reflective surfaces behave as poor reflectors, redirecting most of the signal away from the receiver and causing dropout.

From a physical standpoint, three key principles govern the performance of TF-Luna in uncontrolled environments:

1) Lambert’s Cosine Law: Diffuse reflection from a surface follows the cosine dependence I ∝ cos(θ), where θ is the angle
between the incident beam and surface normal. As this angle increases, the effective reflected energy directed toward the
receiver drops sharply.

2) Signal-to-Noise Ratio (SNR): The sensor’s detection capability depends on maintaining a high SNR. Strong ambient light
reduces SNR by introducing additional photons into the receiver, which may drown out the actual return pulse.

3) Optical Noise Characteristics: Ambient illumination contributes to stochastic noise that scales with incident light intensity.
As a result, the standard deviation of the measured signal increases proportionally, reducing measurement repeatability and
accuracy.

These physical phenomena, though qualitatively understood, demand a quantitative framework to accurately predict their impact
on sensor measurements. The computational model developed in this study is intended to fill this gap by incorporating Lambert’s
cosine law for angular reflection, a dynamic noise model dependent on ambient light intensity, and signal strength thresholds that
emulate real-world detection limits.

By conducting a full factorial parameter sweep across ambient light levels, target reflectivity coefficients, and incidence angles,
the model systematically maps out the regions of stable and unstable sensor performance. This allows the identification of operational
“safe zones” and critical failure boundaries, offering valuable guidelines for system designers who integrate TF-Luna sensors into
autonomous platforms, drones, and environmental monitoring systems.

In real-world scenarios, users often encounter reduced detection stability and increased measurement errors under certain cir-
cumstances. These include high ambient light levels, low reflectivity of target surfaces, or large angles between the sensor’s optical
axis and the surface normal. Such factors lead to a decrease in the intensity of the returned signal and a corresponding increase in
noise and data dropout rate.

The primary aim of this study is to conduct a comprehensive quantitative assessment of how critical environmental parame-
ters—namely ambient illumination intensity, surface reflectivity, and the angle of incidence—affect the accuracy and stability of
distance measurements obtained using the TF-Luna LiDAR sensor. These factors are known to influence the sensor’s signal integrity,
yet their combined and individual impacts have not been fully characterized for compact, low-cost range-finding systems. Specifically,
the research seeks to evaluate how variations in ambient light levels influence the signal-to-noise ratio (SNR) and measurement
reliability; to determine how different surface reflectance properties affect the sensor’s detection range and precision; and to analyze
how oblique incidence angles contribute to signal degradation, reduced backscatter, and increased measurement dropout rates. By
addressing these aspects, the study aims to define stable operating conditions for the TF-Luna sensor and to provide practical
guidance for its deployment in mobile robotics and outdoor perception systems.

Recent academic research emphasizes that the performance and reliability of LiDAR sensors deployed in outdoor environments
are significantly influenced by environmental conditions such as intense solar illumination, airborne dust, precipitation, and varying
surface reflectivity. These external factors introduce optical noise, reduce the signal-to-noise ratio (SNR), and can lead to an
increased rate of measurement dropouts, particularly when the reflected signal becomes too weak to be distinguished from ambient
background noise. Studies have demonstrated that even under moderate environmental interference, compact sensors like TF-Luna
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exhibit substantial variance in distance measurements—especially when interacting with low-reflectivity surfaces or large incidence
angles. These effects are further amplified by atmospheric scattering in dusty or rainy conditions, which degrades point cloud quality
and compromises detection accuracy [2]–[4].

To address these challenges, simulation-based modeling has emerged as a key method for evaluating sensor behavior under variable
conditions without the cost and complexity of full-scale field experiments. Advanced modeling frameworks integrate physical optics
(e.g., Lambert’s cosine law), empirical noise modeling, and Monte Carlo methods to generate statistically grounded performance
profiles [5], [6]. By using simulation platforms such as MATLAB, researchers can vary illumination levels, surface materials, and
angular alignment to explore stability boundaries and failure thresholds. This methodology enables high-throughput experimentation,
which would otherwise be time-consuming or infeasible in physical environments [3], [5].

While many studies have focused on automotive-grade and full-waveform LiDAR systems, significantly less attention has been
given to lightweight and low-cost sensors such as TF-Luna, TFmini, VL53L0X, and RPLIDAR. These sensors are widely adopted in
educational platforms, hobby robotics, and compact mobile robots, yet systematic evaluation under complex environmental conditions
remains limited. The present work seeks to address this gap by providing a detailed simulation and performance characterization
framework tailored specifically to these types of sensors.

Recent developments in environmental noise filtering have further contributed to improving detection accuracy. Beyond classical
methods like Statistical Outlier Removal, new techniques including dynamic thresholding and adaptive SNR-based filtering have
been proposed to mitigate real-time noise fluctuations [2], [7]. Additionally, machine learning methods—such as Support Vector
Machines (SVM), K-Nearest Neighbors (KNN), and Convolutional Neural Networks (CNN)—have been applied to denoise point
clouds and distinguish real object returns from environmental interference [7]. Full-waveform processing methods have also shown
promise, particularly in adverse weather, by capturing temporal characteristics of reflected signals and enabling more refined filtering
and classification [4].

Finally, multi-sensor fusion strategies have proven essential in enhancing the robustness of perception systems. By integrating
LiDAR data with visual information (e.g., RGB cameras), inertial measurements (IMU), and even ultrasonic range data, researchers
have achieved more resilient object detection and environmental mapping under variable and degraded visual environments [6], [8]–
[10]. Deep learning-based fusion approaches have further improved performance, enabling mobile robots to maintain localization
and obstacle awareness even when one sensor modality is partially compromised [8].

In summary, this study builds on recent advancements in LiDAR modeling, noise compensation, and multi-sensor fusion to
develop a simulation-based framework for evaluating the TF-Luna sensor under real-world conditions. It aims to quantify the
combined influence of illumination, surface reflectivity, and incidence angle, while also suggesting practical strategies for deployment
in mobile robotic systems.

II. LITERATURE REVIEW

This review of the literature examines external factors that influence the accuracy of object detection by LiDAR sensors, with a
focus on how ambient light, surface reflectivity, and angle of incidence affect performance. The discussion also highlights simulation
and modeling approaches, particularly those implemented via MATLAB or similar tools, and reviews applications in mobile robotics
and remote sensing. This review synthesizes key findings from prior research to better understand the underlying physics, calibration
methodologies, and practical implications for LiDAR-based systems.

Ambient light is a critical environmental parameter that introduces noise and degrades the signal-to-noise ratio (SNR) in LiDAR
systems, thereby affecting object detection accuracy. Several studies have shown that high background illumination, such as sunlight
or artificial lighting, significantly interferes with the detection of weak laser returns by increasing the probability of false detections in
time-of-flight measurements [11]. In particular, Beer et al. observed that ambient light contributes to elevated background photon rates,
which disrupt the ability of detectors to distinguish true reflected photons from noise, ultimately reducing measurement precision. In
systems where SPAD-based detectors are employed, the sensitivity to ambient illumination requires advanced rejection techniques
such as adaptive photon coincidence detection to maintain reliability even under strong background light. Furthermore, recent work
has indicated that the employing of cross-correlation and interpolation methods, as well as dynamic threshold adjustments, can
substantially mitigate the adverse effects of ambient light on LiDAR measurements [7]. In addition to algorithmic improvements,
hardware techniques such as on-chip time gating and optimized detector array design have been investigated to reduce the effective
area exposed to ambient light, which in turn improves the overall SNR of the system [12]. Ambient light considerations are relevant
not only for automotive applications, but also for remote sensing platforms operating under varying illumination conditions, where
accurate detection of features in diverse terrains is imperative [13].
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Surface reflectivity is another crucial factor that directly influences the strength of the return signal measured by LiDAR sensors.
Research has shown that the raw intensity values recorded by LiDAR systems are intrinsically linked to the target surface reflectivity,
with higher reflectivity materials producing more robust return signals that facilitate improved object detection [14]. In environments
where the surface exhibits heterogeneous reflectance properties, for example, urban landscapes with concrete, vegetation, and glass
the variability in reflectivity must be carefully considered during both data acquisition and post-processing [15]. A fundamental
challenge in LiDAR data processing arises from the fact that raw intensity measurements are often distorted by factors such as
range dependence and instrument-specific processing algorithms, necessitating rigorous radiometric calibration techniques [15]. Li
et al. emphasized that advanced models that incorporate the bidirectional reflectance distribution function (BRDF) are required
to accurately relate the measured intensity to intrinsic surface properties, thus mitigating errors in object classification [16]. The
variation in surface reflectivity leads to inconsistencies in intensity histograms that are critical for remote sensing applications such
as urban mapping and vegetation analysis, where accurate reflectance values help distinguish between different material types.
Consequently, many researchers have sought to develop computational models that correct for these variations so that the corrected
intensity more closely represents the actual surface reflectance independent of extraneous factors [5].

The angle of incidence the angle between the incoming laser beam and the normal to the target surface plays a significant role
in determining the amount of returned laser energy and consequently affects measurement accuracy. Many studies demonstrate that
as the angle of incidence increases, the effective area illuminated by the laser expands while the amount of reflected light captured
by the sensor decreases, following a cosine relationship in ideal conditions [17]. However, real-world surfaces rarely behave as
perfect Lambertian reflectors, and variations in surface texture and material properties mean that the simple cosine law does not
fully capture the observed intensity variations with angle.Laconte et al. provided experimental evidence that high incidence angles
can lead to significant biases in distance measurements, sometimes reaching errors of up to 20 cm, which result in distortions
such as map bending in 3D reconstructions [18]. Moreover, the increased noise and reduced SNR at larger incidence angles have
prompted researchers to develop correction models that account for these geometric effects by integrating empirical and physics-based
methodologies. Recent developments in hyperspectral LiDAR also highlight the necessity of capturing both diffuse and specular
reflection components, because natural surfaces such as leaves exhibit wavelength-dependent behavior that is strongly modulated
by the incidence angle [19]. This modeling effort is critical for accurately retrieving material properties and is particularly useful
when extending object detection algorithms to include spectral information in remote sensing applications [20].

Simulation and modeling approaches form an indispensable part of the research efforts to correct for the distortions introduced
by ambient light, surface reflectivity, and incidence angle effects. MATLAB and similar computational platforms are frequently
employed to develop and validate these correction models, enabling researchers to simulate the physics of LiDAR interactions
with various surfaces under diverse environmental conditions [5]. For example, Tan and Cheng implemented empirical models in
MATLAB to correct intensity data acquired by terrestrial laser scanners by modeling the combined effect of distance and incidence
angle, thereby enhancing the retrieval of true surface reflectance. In another study, the development of correction algorithms using a
piecewise linear model (PLM) allowed researchers to separate and compensate for the influences of instrument-specific parameters
and geometric factors, paving the way for more robust object detection in cluttered and dynamic scenes [17]. Simulation studies using
MATLAB have also been extended to analyze the impact of ambient light on LiDAR performance, where virtual environments are
created to model varying levels of background illumination and their effects on measurement noise and bias [13]. These simulation
frameworks not only allow for the testing and optimization of correction algorithms but also facilitate the integration of LiDAR
data with other sensor modalities in sensor fusion applications, which is a common requirement in mobile robotics and remote
sensing [21].

Applications in mobile robotics and remote sensing further underscore the importance of addressing external factors such
as ambient light, surface reflectivity, and incidence angle in order to achieve reliable object detection and mapping. In mobile
robotics, for instance, accurate LiDAR data are central to tasks such as obstacle detection, simultaneous localization and mapping
(SLAM), and navigation in highly dynamic environments where variable lighting conditions and complex surface geometries are
prevalent [23]. The performance of autonomous vehicles is particularly sensitive to these factors, as false or missed detections
due to ambient light interference or uncorrected reflectivity variations can lead to hazardous situations during navigation [22].
Haider et al. evaluated MEMS-based automotive LiDAR sensors under standardized conditions and highlighted that rigorous
calibration often achieved through simulation and modeling remains essential to compensate for systematic biases introduced by
surface characteristics and geometric distortions. In the field of remote sensing, airborne LiDAR systems are deployed for detailed
topographic mapping, vegetation analysis, and infrastructure monitoring, where differences in surface texture and variable incidence
angles over rugged terrain can significantly impact the quality of the generated point clouds [13]. Furthermore, studies related to the
radiometric processing of LiDAR data have illustrated that after appropriate correction for external influences, the resulting intensity
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measurements can be effectively used to classify land cover and detect subtle changes in the environment [15].
Complementary to algorithmic and simulation studies, several experimental approaches have been developed to validate the

correction models under real-world conditions. Controlled laboratory experiments using reference targets with known reflectance
values have been used to calibrate LiDAR systems, ensuring that recorded intensity values are consistent regardless of variations
in distance or incident angle [17]. These calibration approaches are especially vital in terrestrial laser scanning applications where
the target surfaces often display non-Lambertian behavior and require sophisticated correction mechanisms to yield reliable data
for further processing. The use of co-located reference panels and controlled illumination setups further enables researchers to
disentangle the contributions of ambient light from the intrinsic reflectance properties of surfaces, which is crucial for applications
in remote sensing where precise material identification is required [16]. Additionally, advanced signal processing techniques such as
cross-correlation, parabolic interpolation, and adaptive thresholding have been demonstrated in controlled experiments to improve
the accuracy and precision of Time-of-Flight (TOF) measurements even under conditions of strong background illumination [7].

Researchers have also paid considerable attention to the development of physics-based reflection models that capture the
complexities of real-world surfaces. Traditional approaches based solely on Lambert’s cosine law have been supplemented with
models that incorporate specular reflection components, such as the Lambertian Beckmann model, which more accurately represents
the behavior of glossy or textured surfaces [19]. This model accounts for the interplay between diffuse and specular reflection, thereby
allowing for more precise calibration of backscatter intensity in hyperspectral LiDAR systems a key consideration for applications
that demand high spectral as well as spatial resolution. The integration of these advanced models into simulation environments
enables researchers to study the impact of varying incidence angles and surface roughness on LiDAR returns, and to optimize
detection algorithms accordingly. As a result, object detection algorithms in mobile robotics have been improved by incorporating
calibrated LiDAR intensity data that correct for both geometric distortion and radiometric variability, providing more reliable inputs
for sensor fusion and decision-making processes [22].

In conclusion, the literature shows that ambient light, surface reflectivity, and the angle of incidence are among the primary
external factors affecting the accuracy of object detection by LiDAR sensors. Ambient light introduces background noise and
poses challenges for signal discrimination, while surface reflectivity directly influences the amplitude of returned signals. The angle
of incidence plays a crucial role by modulating the effective reflectance captured by the sensor, which can lead to significant
measurement biases if uncorrected. Simulation and modeling approaches largely implemented via MATLAB and similar platforms
have proven essential for developing rigorous correction algorithms that isolate these factors and restore the accuracy of the LiDAR
measurements. These advancements have practical implications across a spectrum of applications, from autonomous navigation in
mobile robotics to detailed environmental mapping in remote sensing, underscoring the need for continued research into robust
LiDAR calibration and correction techniques. [5], [11], [13], [15], [17]–[19], [23]

III. METHODOLOGY

The simulation process whose structural diagram is given in Figure 1 was done with MATLAB R2023b, which enabled controlled
variation of the lighting, reflectance of the surface, and incident angle to measure their separate and combined effects on measurement
stability and accuracy. Figure 1 illustrates the full simulation workflow used to evaluate TF-Luna’s response under varying
environmental conditions. The diagram includes the following core elements:

1) Input Parameters: Ambient illumination (0–70,000 lux), surface reflectivity (R = 0.1 to 0.9), and incidence angle (0◦ to
85◦). Each parameter was varied independently and in combination to examine its isolated and cumulative influence.

2) Signal Computation: For each set of conditions, the signal strength S was computed based on Lambert’s law (S ∝ R cos(θ)).
Noise σ was modeled as a linear function of illumination, using σ = σ0 + k · L, where L is the lux level.

3) Measurement Simulation: 1000 virtual distance readings were generated per scenario by adding random noise to the true
value, filtered through a detection threshold. Measurements falling outside the range [0.2, 8.0] m or below the detection
threshold were classified as dropouts.

4) Output Metrics: The model outputs three performance indicators: mean absolute error, standard deviation of valid readings,
and dropout rate (percentage of failed measurements).

This simulation enabled systematic quantification of how each environmental factor degrades or stabilizes sensor performance.
Unlike prior studies that examine individual environmental effects in isolation [7], [11], the present approach jointly analyzes
illumination, reflectivity, and angle of incidence within a unified simulation space. This factorial framework makes it possible
to identify combined threshold effects—where multiple moderate stressors jointly push the system into failure—and to chart
operational stability zones for real-world deployment. The simulation setup reflects parameters directly derived from the TF-Luna
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Fig. 1. Structural diagram of the simulation experiment for TF-Luna

sensor datasheet [1], ensuring that signal thresholds, noise scaling, and range boundaries correspond to manufacturer-validated
behavior. Although the true target distance Dtrue is fixed at 2 m, this value was selected to lie near the middle of the TF-Luna’s
usable range (0.2–8.0 m), balancing sensitivity and stability. This allows sensor behavior to be observed under environmental
stress while minimizing range-based nonlinearities. Prior field studies suggest that at this distance, variations in performance are
dominated by ambient effects rather than distance-induced bias [13]. Nonetheless, future iterations of the model will include range
sweeps to evaluate spatial generalizability. The model validation is based on two principles: (1) parameters align with manufacturer
documentation (for detection limits, field of view, and receiver sensitivity); and (2) observed dropout rates, signal variance, and
angular error behavior reproduce those described in published experiments. In this way, the simulation ensures realistic emulation
of TF-Luna’s behavior, while enabling large-scale testing that would be impractical in hardware-only experiments.

The relative signal strength S received by the sensor is modeled using a modified Lambertian reflection law:

S = R · cos(θ) (1)

Environmental noise is incorporated into the model as an additive component with standard deviation increasing linearly with
illumination level:

σ = 0.01 + 0.0001 · L (2)

The simulated measurement output Dmeas is computed by superimposing noise onto the true distance Dtrue (fixed at 2 m in all
experiments), adjusted by the inverse of the signal strength:

Dmeas = Dtrue +
noise
S

(3)

Measurements are classified as invalid (i.e., dropped) when the simulated signal strength falls below a threshold of S < 0.05,
which reflects insufficient return signal strength to ensure reliable detection. This dropout model also reproduces common sensor
failure behavior under sunlight and oblique angles, as noted in both vendor testing and independent performance reviews [23]. The
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simulation iterates over the full range of parameter combinations, systematically generating data for statistical analysis. Graphical
outputs, tables, and descriptive statistics are then used to assess the relationships between environmental conditions and sensor
performance.

IV. EXPERIMENTAL STUDY

The objective of the simulation experiment was to quantify the effects of external parameters on the accuracy and stability of the
TF-Luna sensor. Of particular interest was the way in which changes in surrounding illumination conditions, surface reflectivity, and
incidence angle determine the validity of distance measures. A complete sweep of parameters was implemented using a MATLAB-
based computational model such that each factor was varied systematically and independently over realistic operating limits. Hence,
it was possible both to isolate the individual effects and to determine the total impact of a combined set. Through the simulation of
thousands of measurement states, the work sought not just the average errors as such, but the statistical spread and failure rates of
extreme cases as well. The information gained through this detailed simulation gives a full characterization of the TF-Luna sensor’s
operation under a broad range of environmental conditions and provides recommendations for the optimization of its use in realistic
autonomous applications.

A. Effect of Illumination
When the ambient light level exceeds 20,000 lux, particularly on low-reflectivity surfaces (R = 0.1), the mean distance

error increases noticeably and the frequency of measurement failure rises significantly. The primary cause of this degradation
in performance is the elevated level of background optical noise received by the photodetector, which leads to a reduced signal-to-
noise ratio (SNR) and complicates the reliable detection of the reflected laser pulse amidst ambient interference. As illustrated in
Figure 2, dark surfaces that inherently produce weaker reflectance exhibit both a high variance in measured distances and a steep
increase in dropout rates under intense illumination. The resulting instability is manifested not only as increased random error but
also as a marked rate of complete measurement loss. Conversely, highly reflective targets (R = 0.9) are capable of sustaining
sufficient signal return intensity even under extreme lighting conditions up to 70,000 lux, maintaining measurement accuracy and
stability. Figure 2 presents the relationship between ambient illumination (x-axis, in lux) and the mean absolute distance error (y-axis,
in centimeters) for several values of surface reflectivity R. Each curve corresponds to a different reflectivity level, ranging from dark
(R = 0.1) to bright surfaces (R = 0.9). The figure demonstrates that as illumination increases, errors for low-reflectivity targets
increase rapidly due to diminished signal intensity and increased background noise, while reflective targets maintain sub-centimeter
accuracy across most of the illumination range. This plot underscores the critical importance of both environmental lighting and
surface properties in ensuring stable LiDAR performance.

B. Effect of Reflectivity
The surface reflectance was varied in order to monitor detection stability under varying environmental conditions. When R = 0.1,

under dark and low-reflectance surfaces, targets were unreliable beyond a distance of 3 meters. Such unreliability was marked by
higher measurement noise as well as the increased occurrence of complete dropouts of the signal, as the faint backscattered signal
was often below the detection limit of the sensor. The distance-dependent detection probability decreased sharply, indicating the
limited operational range of the sensor when dealing with material of very low albedo. Conversely, when R = 0.9, for bright and
high-reflectance surfaces, the detection was stable and accurate over the entire range of tested distances under even the most adverse
illumination conditions up to 70,000 lux. Such surfaces provided a strong return signal ensuring a very stable signal-to-noise ratio
and lowering the instances of random error as well as dropouts. The outcomes validate the conclusion that surface reflectance is a
top factor dictating the effective sensing distance and operational reliability of TF-Luna under demanding outdoor conditions.

C. Effect of Incidence Angle
Figure 3 illustrates that the measurement error increases sharply by going beyond the incidence angle of 60◦ even for reflective

targets. This occurs mainly due to the lack of backscattering of the laser beam towards the receiver due to the increasingly oblique
incidence. Based on the application of Lambert’s cosine law, the intensity of the illumination of diffusely reflecting surfaces
declines linearly with cos(θ), and thus at larger angles the effective cross-section for diffusely reflecting the pulse becomes small.
Consequently, the return signal gets weaker and contributes to having a lower signal-to-noise ratio and a higher likelihood that
the reflective pulse drops below the sensor detection level. Secondly, for surfaces having specular or semi-specular characteristics,
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Fig. 2. Influence of illumination on measurement error. Significant error growth is observed at high illumination levels, especially
for dark targets.

the angle of reflection also moves away from the receiver’s receive area at larger angles of incidence, thus resulting in decreased
detectable signal. These collective effects account for the observed decline of the performance of the TF-Luna at very large angles
of incidence and highlight the necessity of keeping the sensor and target surface nearly aligned. Figure 3 provides a plot of mean
absolute error (y-axis, in centimeters) versus the laser beam’s incidence angle (x-axis, in degrees), evaluated across different distances
and reflectivity levels. The results clearly show a nonlinear degradation in accuracy as the incidence angle increases from 0◦ to 85◦.
The curve remains relatively flat until approximately 45◦, after which the error increases rapidly, reaching over 6 cm at 75◦.This
trend is consistent across both high- and low-reflectivity surfaces, although the effect is more severe for dark or glossy targets
due to additional signal losses from specular deflection. The figure demonstrates the critical role of sensor alignment: to maintain
sub-centimeter accuracy, the incidence angle should be kept below 45◦.For practical applications,this implies that surface geometry
and LiDAR positioning must be optimized to avoid oblique reflections that lead to unreliable or missing returns.

D. Summary of Results
Table I presents an extended summary of the simulation results and offers a quantitative evaluation of how different external

factors—illumination level, surface reflectivity, and incidence angle—impact the accuracy and reliability of the TF-Luna sensor. As
shown, low ambient light levels (below 5000 lux) yield highly stable measurements with sub-centimeter accuracy and no measurement
loss. However, increasing illumination to over 20,000 lux results in a substantial rise in both error (up to 5.8 cm) and dropout rates
(up to 12%), while extremely bright conditions (>50,000 lux) further exacerbate measurement degradation, especially for dark
surfaces. Reflectivity plays a dominant role in signal strength and measurement reliability. Surfaces with high reflectivity (R = 0.9)
maintain accuracy across all illumination levels, while dark targets (R = 0.1) cause significant error (up to 6.5 cm) and dropout rates
of up to 18%. The data also show a nonlinear effect of incidence angle: near-normal angles (0◦–30◦) maintain low error, but steep
angles (>60◦) sharply reduce signal return, leading to errors exceeding 7 cm and dropouts surpassing 25%. A critical observation is
that when high illumination, low reflectance, and steep incidence angles act in combination, measurement performance deteriorates
severely, with average error exceeding 9 cm and failure rates above 35%. These findings underscore the importance of considering
environmental conditions jointly, rather than in isolation, and provide practical guidance for the deployment of TF-Luna in robotics
and sensing applications. Specifically, optimal measurement conditions are achieved under moderate lighting (<20,000 lux), with
reflective targets (R > 0.5) and incidence angles under 45◦.
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Fig. 3. Influence of incidence angle on measurement error. At steep angles, signal reflection becomes too weak to detect, increasing
the failure rate.

V. RESULTS AND DISCUSSION

Discussion of Parameter Effects
Effect of Illumination. Simulation results indicate that as ambient illumination increases from 0 to 70,000 lux, the dispersion

of distance measurements grows steadily. At low illumination levels (<5000 lux), TF-Luna showed stable performance with an
average error of approximately 1.5 cm and no recorded dropouts. However, at illumination levels above 20,000 lux, noise became
more pronounced, and up to 12% of measurements failed, especially for dark surfaces. Importantly, despite the increase in variance,
no systematic shift in the average measured distance was observed—mean values remained close to true values. Hence, the primary
influence of intense ambient light is in increasing instability and generating false readings. To ensure reliable measurements in such
conditions, shielding the sensor from direct light or applying software-based filters is recommended.

Effect of Reflectivity. Objects with different surface reflectance coefficients demonstrated significant variations in detection range
and reliability. Simulation showed that white matte surfaces (R = 0.9) enabled stable sensor operation even at maximum range,
while black targets (R = 0.1) became unstable beyond 3–4 meters. At low reflectivity, dropout probability reached 18%, and the
average error increased to 6.5 cm. However, at close ranges, accuracy was consistent across all albedo levels (approximately 1–2
cm). This suggests that reflectivity primarily affects maximum detection range rather than near-range accuracy. Mirror-like surfaces
require special handling: while effective at normal incidence, even slight angular deviations (5–10°) caused the signal to vanish due
to reflective deflection away from the receiver.

Effect of Incidence Angle. Changes in the angle between the laser beam and the surface normal led to a predictable decline in
signal strength. At 0◦, reflection was maximal; at 30◦, signal amplitude dropped to about 85%, at 45◦—to 50%, and at 60◦—to just
20% of the original level. When the incidence angle exceeded 70◦, reliable measurements became impossible: the signal weakened
and errors increased dramatically. This aligns with Lambert’s cosine law, where the intensity of backscattered light is proportional
to cos(θ). Moreover, for specular surfaces, the signal follows the law of mirror reflection, making reliable detection feasible only
near normal incidence. A metal plate test confirmed that deviations as small as 5–10° prevented the return beam from reaching the
receiver.

Combined Impact. The combined effect of illumination, reflectivity, and angle is evident in both increased measurement error
and failure probability. These findings form the basis for practical guidelines to enhance TF-Luna’s performance under real-world
operating conditions.
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TABLE I
TABLE 1 — EXTENDED SUMMARY OF SIMULATION RESULTS FOR TF-LUNA

Test Condition Mean Error (cm) Failure Rate (%)
Illumination (lux)
0–5000 (low) 1.5 0
5000–20000 (moderate) 3.2 5
>20000 (high) 5.8 12
>50000 (extreme) 6.9 21
Reflectivity R

0.1 (black matte) 6.5 18
0.3 (dark gray) 4.8 13
0.5 (neutral) 2.5 5
0.7 (light gray) 1.6 2
0.9 (white matte) 1.2 1
Incidence Angle (◦)
0◦–30◦ (near normal) 1.8 2
30◦–60◦ (moderate) 4.1 10
60◦–75◦ (steep) 7.3 25
>75◦ (grazing) 8.1 31
Combined Effects (worst case)
L > 50000, R = 0.1, θ > 75◦ >9.0 >35

VI. CONCLUSION

This study quantified the influence of ambient light, target reflectance, and sensor–target incidence angle on the measurement
accuracy and operational stability of the TF-Luna laser rangefinder under outdoor conditions. The results demonstrate that ambient
illumination exceeding 20,000–70,000 lux, particularly in combination with low-reflectivity surfaces, significantly increases distance
measurement variability and dropout rates. These effects are consistent with known degradation patterns in LiDAR systems docu-
mented in the literature, where ambient illumination degrades signal-to-noise ratio (SNR) and complicates pulse discrimination [7],
[24].

From a hardware perspective, shielding the sensor from direct sunlight is a well-established method to mitigate optical interference.
Prior research in automotive and industrial applications supports the use of optical hoods, bandpass filters, and anti-reflective
enclosures to reduce background photon flux and improve signal clarity [25], [26]. In the context of TF-Luna, implementing such
protective measures is especially critical when working in dynamic lighting environments.

With regard to target reflectance, our simulation confirms that high-albedo surfaces (R ≈ 0.9) ensure stable performance up to
8 m, whereas low-albedo surfaces (R < 0.1) restrict reliable detection to approximately 2.5–3 m and exhibit a greater incidence
of dropout. These findings align with earlier studies showing that the effective detection range and stability of LiDAR sensors are
tightly linked to surface reflectivity [7], [26]. Practical mitigation strategies include the use of dynamic gain control circuits and
surface-based calibration routines, as validated in [7], [27].

Sensor orientation is another critical factor. At incidence angles exceeding 60◦–70◦, the return signal strength declines dramati-
cally due to both diffuse and specular reflection losses. This is consistent with Lambertian models and verified by experimental data
on angular reflectance effects [26], [28]. To ensure measurement stability, the sensor should be installed at an angle of incidence not
exceeding 45◦, particularly when working with glossy or metallic targets. Mechanical alignment strategies and angular calibration
routines, similar to those used in automotive integration procedures, are recommended to maintain consistent angular positioning [25],
[29].

Based on the simulation and referenced practices, we propose the following engineering recommendations:

1) Shield the TF-Luna from direct sunlight using an optical enclosure or hood, with optional spectral filters to reduce ambient
interference [7], [30];

2) Pre-calibrate using targets with known reflectivity, and apply real-time adaptive gain control to maintain effective SNR across
various surface types [26], [27];
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3) Maintain the sensor–target incidence angle below 45◦ to ensure consistent signal return, especially on low- or specular-
reflectivity surfaces [21], [28];

4) Implement real-time noise modeling and dynamic SNR-based filtering in software to suppress background fluctuations and
improve confidence in detection [7], [26].

Future work will focus on refining both hardware and software subsystems. In hardware, optical shielding, adaptive gain circuits,
and embedded signal preprocessing filters are expected to reduce dropout rates and improve performance in variable lighting [7],
[31]. In software, adaptive noise compensation and real-time calibration routines leveraging historical data are promising avenues,
particularly for applications requiring sustained operation in changing environments [34]. Field deployments in urban, off-road, and
natural terrains will be used to validate simulation-based strategies and ensure practical applicability. Previous studies highlight the
benefit of integrating auxiliary sensors such as IMUs, GPS, and angular encoders for more robust outdoor LiDAR operation [28],
[29].

Ultimately, this study confirms that with proper design consideration, TF-Luna can maintain sub-centimeter accuracy under a
variety of outdoor conditions. The alignment of engineering strategies with real-world constraints—supported by experimental and
modeling evidence—positions this work as a foundation for deploying low-cost LiDAR solutions in robotics and environmental
monitoring.
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Abstract

This study investigates the application of physics-informed neural networks (PINNs) for solving Poisson
equations in both 1D and 2D domains and compares them with finite difference method. Additionally, the
study explores the capability of multi-task learning with PINNs, where the network not only predicts the
solution but also estimates unknown parameters. In the case of a second-order differential equation with
a varying coefficient, PINNs successfully approximated both the source term and the varying coefficient
while achieving low training loss. The model demonstrated excellent generalization capabilities and accurate
reconstruction of the underlying system parameters, showing the potential of PINNs in complex physical
simulations.

Keywords: numerical analysis, multi-task learning, deep learning, PINNs, FDM

I. INTRODUCTION

PDEs form a crucial backbone in the understanding and modeling of various real-world problems. In simple words, PDEs describe
how something changes through time and space based on very well-defined mathematical rules. The central issue with PDEs is
determining whether these rules suffice to guarantee a unique solution to the problem [1] [2].

In most real-life cases, it is impossible to find the exact solutions for such complex equations involving PDEs. This gave rise to
the development of numerical methods for estimating solutions. Some of the popular methods include the finite element method,
finite difference method, finite volume method, and spectral element method. Out of these, FEM is the most advanced with strong
mathematical support for ensuring accurate results, stability, and error control. FEM solvers often employ efficient techniques such
as sparse linear systems or iterative methods, which make them suitable for many practical problems [3].

Most recently, new techniques have emerged as a result of the growth of deep learning which aid in the resolution of PDEs.
One of these is Physics-Informed Neural Networks (PINNs). PINNs are neural networks which, by means of their loss function,
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encode the physical laws described by differential equations to drive the learning process towards solutions that better respect the
underlying physics. PINNs can approximate solutions to partial differential equations and ordinary differential equations and solve
inverse problems, e.g., estimating model parameters from scarce data. They also happen to be tremendously useful for solving
various kinds of PDEs because of their simplicity in implementation and direct incorporation of the underlying physics within the
learning itself.

Despite their adoption, deep learning algorithms, including PINNs, still suffer from high computational costs, complex opti-
mization, and weak theoretical foundations. This study aims to achieve two main objectives. First, it aims to rigorously evaluate
the performance of PINNs in solving PDEs by comparing their accuracy, convergence, and computational efficiency to traditional
numerical methods, particularly the Finite Difference Method (FDM). By applying PINNs to 1D and 2D Poisson equations, the
study assesses their accuracy, error metrics, and computational demands while examining their robustness across different boundary
conditions and domain sizes. Second, the research explores the integration of multi-task learning (MTL) [5] within the PINN
framework to enhance its ability to solve ODE while simultaneously predicting related physical quantities, such as source terms
and varying coefficients. By leveraging shared information across tasks, the study aims to improve the generalization capabilities of
PINNs and develop a unified model capable of solving complex multi-dimensional problems in a single optimization process. We
build upon our prior work [4] and provide additional analysis.

II. RELATED WORKS

The increasing use of neural networks has prompted researchers to utilize a variety of techniques in deep learning for solving
mathematical equations. Raissi et al. [6] present PINNs as a broad framework in deep learning to solve nonlinear forward and inverse
partial differential equations (PDEs). With integration of basic principles from physics, PINNs provide a mathematically strong and
data-effective approach to solving complex spatio-temporal problems using continuous-time and discrete-time Runge–Kutta methods.
This method has been validated by extensive testing across a variety of applications in PDEs, ranging from fluid dynamics to quantum
mechanics.

Ryck et al. [7] present a rigorous numerical analysis of PINNs, systematically classifying errors into approximation, gener-
alization, and training errors. They critically examine how PDE characteristics and domain dimensionality influence accuracy,
identifying training error as a significant constraint on PINN performance. Their findings underscore the importance of solution
regularity and stability in ensuring the reliability of PINN-based computations. Hu et al. [8] investigate the application of PINNs in
computational solid mechanics, addressing limitations associated with sparse, noisy, and high-dimensional data. By integrating prior
physical knowledge, PINNs enhance model generalizability, enforce physical consistency, and improve computational efficiency. The
study provides a comprehensive review of PINN architectures, algorithmic advancements, and their implementation in constitutive
modeling, damage evaluation, and inverse problem-solving. Cuomo et al. [9] provide a thorough review of PINNs and explore
their use in solving a wide variety of partial differential equation (PDE) problems, both fractional and stochastic types. The paper
also discusses developments like Physics-Constrained Neural Networks (PCNNs) and variational hp-VPINNs and touches upon
optimization algorithms, network architectures, and loss function setup. Though PINNs have already shown great promise, the paper
identifies open problems to be solved in order to enhance their reliability and usability.

Grossmann et al. [10], past comparisons between PINNs and other numerical methods have shown that each approach has
strengths and weaknesses. However, the paper does not clearly explain these differences, making it harder to assess how competitive
PINNs are for different types of problems. While the study presents specific cases where PINNs struggle or perform well, it lacks
a systematic discussion of key factors such as computational cost, accuracy, stability, and problem structure. Without this detailed
comparison, it is difficult to determine in which scenarios PINNs might be advantageous or where traditional methods like FEM
remain superior. The findings suggest that FEM remains the more reliable method, particularly for high dimensional PDEs. In light of
the findings from previous works, we conduct a comprehensive comparison between the well-established FDM and the state-of-the-
art PINNs in the context of solving non-complex PDEs, where FDM has demonstrated superior accuracy and efficiency. The FDM,
known for its robustness and reliability, has long been a standard technique for numerically solving PDEs with relatively simple
geometries and boundary conditions. On the other hand, PINNs represent an emerging approach in deep learning. Additionally, we
extend our comparison by framing the development of the PINN method within the context of multi-task learning (MTL). In this
setting, the PINN is treated as an MTL model, enabling it to simultaneously learn from multiple related tasks. This approach not
only facilitates a more efficient learning process but also allows for the adaptation of the PINN to a broader range of problems by
sharing knowledge between tasks.
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III. MATHEMATICAL BACKGROUND

In this section, we explain the mathematical background of the methods used in this work.

A. Poisson Equation
The Poisson equation is one of the most basic PDEs, which results in a potential field created by a given source. It provides

significant applications to physics and engineering, modeling electrostatics, heat conduction, and fluid dynamics among many others
[11] [12].

In one dimension, the Poisson equation is given by:

d2u(x)

dx2
= f(x) (1)

where u(x) is the unknown function, f(x) is a source term.
In such cases, the domain is normally an interval [a, b] and the boundary conditions are often given at both ends, say in the

following form of Dirichlet boundary conditions:

u(a) = u0, u(b) = u1

In two dimensions, the Poisson equation generalizes to:

∇2u(x, y) = f(x, y) (2)

where ∇2 is the 2D Laplacian operator, u(x, y) represents the unknown function, and f(x, y) is called the source term. In
two dimensions, it can normally be a rectangular region or even more complicated geometry. On edges, boundary conditions are
imposed. There may also be Dirichlet boundary conditions on these. A typical Dirichlet boundary condition takes the following
form: u(x, y) = g(x, y) on the boundary of the domain.

The accuracy of the solution approximations for the 1D and 2D Poisson equations is evaluated using the L2 norm and relative
error. The L2 norm of a vector v = [v1, v2, . . . , vn] is defined as:

∥v∥2 =

√√√√ n∑
i=1

v2i .

This norm gives the size of the magnitude of a vector in Euclidean space. To verify these results for accuracy, we calculate the
L2 relative error between the computed solution û and the exact solution u defined as:

L2 =
∥û− u∥2
∥u∥2

. (3)

B. Physics-Informed Neural Networks
Let uθ(x, y) denote the neural network approximation of u(x, y) where θ is used to denote the parameters of the network.

The network architecture considered here is a fully connected feed-forward neural network, such that the application of activation
functions is performed layer by layer. It can be written as:

uθ(x, y) = NNθ(x, y)

The network layers are defined as follows:

x(i+1) = σ
(
w(i)x(i) + b(i)

)
for each hidden layer, and the output layer is linear. The residual of the PDE is defined as:

R(x, y) =
∂2uθ

∂x2
+

∂2uθ

∂y2
− f(x, y)

where f(x, y) is the source term. The PDE loss is computed as the mean squared error of the residual over a set of domain
points (xi, yi):

Received: February 13, 2025. Reviewed: March 20, 2025. Accepted: April 30, 2025. © 2025 Batyr Sharimbayev, Shirali
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LPDE =
1

N

N∑
i=1

R(xi, yi)
2 (4)

The boundary conditions loss is computed similarly, where the loss for boundary points (xj , yj) is given by:

LBC =
1

M

M∑
j=1

(uθ(xj , yj)− u(xj , yj))
2 (5)

The total loss function combines the PDE residual loss and the boundary conditions loss:

L(θ) = LPDE + LBC (6)

C. Finite Difference Method (FDM)
The FDM is a numerical method for the solution of PDEs that is based on discretizing their solutions on a lattice of points that

discretize the domain. Based on this concept, the FDM relies upon approximating the derivatives of an unknown function in terms
of finite differences that replace the PDE by a set of algebraic equations.

First, consider the one-dimensional Poisson equation:

d2u(x)

dx2
= f(x)

Using a finite difference scheme, the second derivative can be approximated by the following way:

d2u(x)

dx2
≈

u(x+∆x)− 2u(x) + u(x−∆x)

(∆x)2
(7)

where ∆x is the step size and u(x) is the unknown function at the grid points. By discretizing the domain [a, b] with a grid of
points, we convert the continuous PDE into a system of algebraic equations which can be solved numerically.

In two dimensions, the Poisson equation is given by:

∇2u(x, y) = f(x, y)

where ∇2 is the Laplacian operator:

∇2 =
∂2

∂x2
+

∂2

∂y2
.

The second derivatives in the x and y directions are approximated by finite differences. The Laplacian operator in 2D is
approximated as:

∇2u(x, y) ≈
u(x+∆x, y) + u(x−∆x, y)− 2u(x, y)

(∆x)2
+

u(x, y +∆y) + u(x, y −∆y)− 2u(x, y)

(∆y)2
(8)

where ∆x and ∆y are increments in steps in directions x and y, respectively.
The FDM discretizes both the domain for solving both the 1D and 2D Poisson equation and then solves for resulting algebraic

equations. Iterating through each grid point, u(x) or u(x, y) values would be computed based on the finite difference approximation
offered by the PDE. Boundary conditions would be specified along the domain’s boundary in terms of either Dirichlet conditions.
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IV. METHODS

This paper focuses on constructing and improving PINNs for solving the 1D and 2D Poisson equations and comparing them
with the FDM.

To begin with, FDM is the first approach we had to study to solve the Poisson equation. The domain of the 1D example is split
into a lattice grid, and the equation is solved through second-derivative approximation. The same procedure is applied in 2D, in
which both spatial dimensions are discretized. The numerical solution is obtained and compared to the calculated exact solutions
in order to check accuracy using the L2 relative error.

At this stage, the PINN is implemented to solve the equations. The neural network is trained by minimizing a loss function that
comprises the Poisson equation and the boundary conditions. The training is therefore carried out in two steps: firstly, with the
Adam optimizer to fit the parameters of the model, and subsequently with the L-BFGS method for fine-tuning.

Latin Hypercube Sampling, in both 1D and 2D scenarios, provides points for model analyses. The network is trained to provide
a set of boundary conditions. The performance of the model is determined by comparing the output of the neural network with a
known solution using the relative L2 norm.

Ultimately, we applied the FDM to a thermal problem involving a second-order ordinary differential equation (ODE). We split
the spatial domain into parts, provided intervals, and boundary conditions at both ends. The problem was solved iteratively until the
difference between subsequent values was less than some small predefined threshold. The material properties and source term were
represented as functions of spatial position. The PINN solution was compared to the one obtained using multivariate interpolation
to assess its accuracy. Then, the forward and inverse problem was solved using a PINN structure. The PINN was based on a
feedforward neural network with hidden layers that were trained to estimate temperature and the source term via a learned loss
function. The model was validated against FDM and observational data. The code was written in Python and is available on GitHub:
https://github.com/hardkazakh/pinn-vs-fdm

V. EXPERIMENTAL RESULTS

In this section, we will solve 1D and 2D Poisson equations using FDM and PINNs. We will also use the PINNs approach to
multi-task learning.

A. 1D Poisson equation
Let us investigate the 1D Poisson equation defined as:

d2u(x)

dx2
= 16x7e−x4

− 20x3e−x4
, x ∈ [0, 1], (9)

with Dirichlet boundary conditions:

u(0) = 0, u(1) = e−1.

In Section III-C, we explained that the first step to solving PDEs with the FDM is to rewrite the equation in a weak form. We
already did this for the Poisson equation. The next step is to create a mesh. This is like breaking the interval [0, 1] into small pieces,
called cells. The number of cells is 512. More cells mean the grid is finer, which gives a more accurate solution, but it also takes
more time and computing power.

For solving the 1D Poisson equation using PINNs, there are three design parameters that we need to specify before training.
The first step is choosing a loss function. Following the vanilla PINNs approach, we evaluate the goodness of the solution using
the discretised mean squared error over the PDE, boundary, and initial conditions.

The second design parameter is the neural network architecture, that is, the type of neural network, the activation function, and
the number of hidden layers and nodes. For the 1D Poisson case, we train feed-forward dense neural networks with tanh as the
activation function. We use the result on the architecture of [20, 20, 20, 1].

The approximations of the 1D Poisson equation solution using FDM and PINNs are compared to the exact solution on a [0, 1]

interval with 512 points. Fig 1 shows the exact solution and the approximations. One PINN setup, with only one hidden layer and
one node, performs poorly and fails to satisfy the boundary conditions. All approximations are very close to the exact solution.

For the 1D Poisson equation, the relative error for the FDM is calculated to be 7.26 × 10−8, while the relative error for the
PINN approach is 5.63 × 10−6. These results show that FDM provides a more accurate approximation of the solution compared
to PINNs in the 1D case.

Received: February 13, 2025. Reviewed: March 20, 2025. Accepted: April 30, 2025. © 2025 Batyr Sharimbayev, Shirali
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Fig. 1. Comparison of solutions: 1-Exact, 2-FDM, and 3-PINN

B. 2D Poisson equation
Let us now investigate 2D Poisson equation defined as:

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 2

(
x4(3y − 2) + x3(4− 6y) + x2

)
. (10)

The boundary conditions are:

u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0.

The analytical solution of the equation is:

u(x, y) = (x− 1)2y(y − 1)2x2.

The approximations of the 2D Poisson equation solution using FDM and PINNs are compared to the exact solution on the
[0, 1] × [0, 1] domain, discretized with a 1000 × 1000 grid. The neural networks are trained using the tanh activation function
with an architecture of [60, 60, 60, 1].

Fig 2 shows the analytical and approximate solutions of the 2D Poisson equation. For the 2D Poisson equation, the L2 relative
error for the FDM approximation is 2.21 × 10−4, while for the PINN, it is 6.01 × 10−3. Again, the FDM method shows a
significantly lower error compared to the PINN, indicating that FDM achieves a more precise solution in both 1D and 2D cases.

These error analyses again confirm the accuracy of the FDM approach in solving Poisson equations, especially in comparison
with PINNs, which showed higher relative errors in both 1D and 2D problems. However, in higher-order equations, PINN can give
better results. We consider this in our future research.

Fig. 2. Comparison of solutions: 1-PINN, 2-Exact, and 3-FDM.
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C. PINNs approach for multi-task learning (MTL)
PINNs embed both forward and inverse problems under one framework by embedding the data and physical laws in the loss

function of the neural network. The network jointly predicts the forward solution of a PDE and estimates unknown parameters or
inputs (inverse problem) through the optimization of one combined loss function that considers residual of PDE, boundary conditions,
and discrepancies between model predictions and observations. This capability of handling both tasks together makes PINNs highly
effective at solving problems that involve solution estimation and identification of parameters.

The problem is defined by the following second-order differential equation:

d2U(x)

dx2
− a(x)U(x) = Q(x), 0 < x < L, (11)

where Q(x) represents the source term and a(x) describes the varying coefficient. Specifically, the source term is given by:

Q(x) = 1 + b1 sin(w1x)

and the varying coefficient is defined as:

a(x) = b1 +
x

1 + x2
.

The boundary conditions for the differential equation are given by: U(0) = 1, U(L) = 3. The problem now involves the solution
of this second-order differential equation along with the boundary conditions shown above. Q(x), the source function, incorporates
a sine function that could model some periodic influence in the system. This coefficient, a(x), depends on the position x in the
domain; therefore, this makes the equation more complicated, introducing spatial dependence in the solution.

The aim of Experiment 1 is to approximate both the source term Q(x) and the solution U(x) for the given differential equation.
PINN simultaneously predicts the solution U(x) while reconstructing the source term Q(x) using the varying coefficient a(x) as
part of the system.

Fig. 3. Visualization of FDM Solution and varying coefficient of a(x)

The PINN model was trained for 40,000 epochs. Initially, the loss function was quite large, but it gradually decreased as the
model learned. By the end of the training, the loss had reduced to 1.87×10−2, indicating that the model had learned the underlying
physics of the problem. The predictions made by the PINN for the differential equation solution were then analyzed and aligned
with the FDM results. These predictions were accurate not only at the observed points but also at unobserved locations, highlighting
the PINN’s ability to generalize well across the entire domain. Fig 3 presents the visualization of the PINN’s predicted temperature
distribution and the corresponding predicted source term.
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The aim of Experiment 2 is to approximate both the varying coefficient a(x) and the solution U(x). By incorporating a(x) as
an unknown parameter in the system, the model predicts the solution U(x) while reconstructing a(x) from the given data.

The PINN model was trained for 40,000 epochs. Initially, the loss function exhibited high values, but with training, it gradually
decreased as the model captured the intricate relationships within the system. By the end of the training, the loss had reduced to
3.1563× 10−2, demonstrating that the model effectively learned both the solution and the coefficient.

Fig. 4. Visualization of PINN Solution and prediction of a(x)

Fig 4 illustrates the visualization of the PINN’s predictions for the temperature distribution and the reconstructed varying
coefficient. The predicted solution from the PINN closely aligns with the numerical solution obtained using FDM.

VI. DISCUSSION & CONCLUSION

In this paper, we have discussed using PINNs and FDM to solve the problem in both 1D and 2D. From our comparison, it
was illustrated that even though PINNs offer a flexible and data-driven approach, traditional numerical methods such as FDM offer
improved accuracy in such a case.

For the 1D Poisson equation, FDM’s relative error was calculated as 7.26× 10−8 and PINN’s relative error was calculated as
5.63× 10−6. In a similar manner, for the 2D Poisson equation, FDM’s relative error was calculated as 2.21× 10−4, which was
much lesser than PINN’s error value, which was 6.01× 10−3. These findings establish that FDM gives a better approximation in
problems involving Poisson.

Additionally, we have explained multi-task learning with PINNs. We have witnessed that PINN reconstructed variable a(x)

and source term Q(x) with decreasing loss to 1.87 × 10−2 and 3.15 × 10−2, respectively, in 40,000 epochs. The PINN model
had strong generalization capability and predicted with high accuracy even at unseen locations. Regarding the computational
complexity, PINN’s training to solve the 2D Poisson equation was very time-consuming. This reflects high computational cost
in high-dimensional PDEs, whose practicality and efficiency depend greatly upon high-end GPU access. The longer time to train
reflects a major disadvantage of PINNs compared to standard numerical methods in problems requiring quick and scalable solutions.
We believe that PINNs have more errors than FDM because it has problems in optimizations and it has problems in fine solution
feature capture.

Overall, our findings indicate that while PINNs do not presently outperform FDM in terms of accuracy for non-complex equations
because they can be flexible and can perform multi-task learning, they provide a reasonable alternative to complex PDEs when
conventional numerical methods have limitations.

In the present study, our aim will be to improve PINN’s performance and efficiency with more advanced neural network
architectures and learning techniques to solve other PDEs. One direction would be to design hybrid algorithms by combining
PINNs with traditional numerical methods such as FDM. With FDM’s high-precision performance in structured grid regions and
PINNs’s adaptability in unstructured or sparsity regions, a more effective and robust framework can be established. This hybrid
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method can rectify PINN’s limitation in high-precision attainment without sacrificing PINN’s ability to solve inverse problems and
multi-task learning.
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Abstract

This paper examines how the average value of the sequence bn in the Lehner expansion of a real
number x influences its box dimension. Our primary objective is to analyze how variations in the average
of bn impact the box dimension, which serves as a measure of the complexity of the sequence. Using the
box-counting method, we numerically estimate the box dimension and explore its relationship with the
fractal nature of Lehner expansions.

Keywords: Regular continued fraction, Lehner expansion, semi-regular continued fraction,fractal dimension, box dimen-
sion.

I. INTRODUCTION

Continued fractions [1]–[4] play important role in number theory,this way of writing numbers is very useful in number theory
because it helps us understand how well we can approximate real numbers using fractions.A semi-regular continued fraction [7] is
a special type of continued fraction that extends classical regular continued fractions by allowing a broader set of partial quotients
while keeping important mathematical properties.One such semi-regular expansion is the Lehner continued fraction, which has been
investigated for its unique convergence behavior and number-theoretic significance (Lehner, 1949).
Any irrational number x ∈ [1, 2] has a unique Lehner expansion of the form

b0 +
σ1

b1 +
σ2

b2 + · · ·+
σn

bn + . . .

= [b0;σ1/b1, σ2/b2, . . . , σn/bn, . . . ]
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(1)
where (bi, σi+1) equals (1,1) or (2,-1).We call these continued fractions Lehner fractions or Lehner expansions. Every rational
number has two different finite Lehner expansions.
Lehner expansions can be found using this map L : [1, 2) → [1, 2) , which is defined as follows.

Lx :=

{
1

2−x
, 1 ≤ x < 3

2
,

1
x−1

, 3
2
≤ x < 2.

Notice that in this expansion for x ∈ [1, 2) one has

(bi, σi+1) =

{
(1, 1), if Li(x) ∈

[
3
2
, 2

)
,

(2,−1), if Li(x) ∈
[
1, 3

2

)
.

Lehner expansions are a type of semi-regular continued fraction. A semi-regular continued fraction can be either a finite or an
infinite fraction.

The study of exceptional sets in continued fractions has been a focus of recent research, exploring their fractal properties and
Hausdorff dimensions. Fang et al. [8] determined the Hausdorff dimension of a set related to the growth rate of continued fraction
coefficients. Kazin and Kadyrov [5] extended Good’s work on fractal geometry in continued fractions, establishing new bounds on
Hausdorff dimensions of level sets formed by restricting partial quotients. Bakhtawar et al. [9] calculated the Hausdorff dimension of
a set defined by conditions on ratios of consecutive continued fraction coefficients, contributing to the metrical theory of continued
fractions. While not directly addressing continued fractions, Parsell and Wooley [10] investigated exceptional sets for Diophantine
inequalities, showing that under certain conditions, the measure of the exceptional set in an interval is bounded. These studies
collectively advance our understanding of exceptional sets in number theory and their geometric properties fractal properties of
these sets, particularly their Hausdorff and box dimensions, have been the subject of extensive research [11]. For regular continued
fractions, the dimension of sets defined by constraints on their partial quotients has been thoroughly examined [4], [12]. However,
for semi-regular expansions such as the Lehner continued fraction, a comprehensive understanding of these exceptional sets remains
incomplete.

Fractal dimension measures how completely a fractal fills space as one zooms in on finer scales. Unlike traditional Euclidean
dimensions, which take integer values (e.g., a line has dimension 1, a plane has dimension 2), fractal dimensions can be non-integer,
reflecting the complexity and self-similarity of fractal structures. It quantifies how detail in a pattern changes with the scale at which
it is measured, making it useful for characterizing irregular shapes in nature, such as coastlines, clouds, and turbulent flows. The
Hausdorff dimension and box dimension are both types of fractal dimensions. For more information on how these various notions
of dimension are related, we refer to [6]. In this paper, we focus only on the box dimension.The box dimension of set S is defined
as

dimB(S) = lim
δ→0

logN(δ)

− log δ
,

where N(δ) is the number of boxes size δ required to cover set S.
If this limit exists. This dimension captures how the number of covering elements scales with their size and provides a practical

way to estimate fractal complexity.
Theorem [7,theorem4] For almost all real numbers x ∈ (1, 2), we have that their Lehner expansions

x = [b0;σ1/b1, σ2/b2, · · · , σn/bn, · · · ]

lim
n→∞

b1 + b2 + · · ·+ bn

n
= 2.

In this work, we focus on the set of numbers for which the sequence of partial quotients bn in the Lehner expansion exhibits
an anomalous growth pattern, specifically cases where the long-term average deviates from its expected limit. Such deviations are
known to correspond to fractal-like structures, whose complexity can be quantified using box dimension [13].Our objective is to
determine how the box dimension of these exceptional sets depends on the asymptotic behavior of bn, extending results known for
regular continued fractions []. We consider those real numbers x for which the above limit is not equal to 2. By the theorem we
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know that this set has Lebesgue measure zero. However, it may have a complex structure from a fractal geometry point of view.
To understand, for any ϵ > 0 we define sets

S(ϵ, c) =

{
x ∈ (1, 2) : lim

n→∞

b1 + b2 + · · ·+ bn

n
∈ (c− ϵ, c+ ϵ)

}
.

Our research question is to numerically investigate how box dimension of S(ϵ, c) depends on ϵ. For the definition of box dimension,
see the next section.

To achieve this, we employ a computational approach based on binary word representations, adapting established methods from
multifractal analysis (Barreira & Schmeling, 2000). By numerically estimating the box dimension for different classes of exceptional
sets, we provide new insights into the geometric complexity of Lehner continued fraction expansions. Our findings contribute to
the broader understanding of fractal structures in number theory and highlight the rich interplay between continued fractions and
dynamical systems.

The structure of the paper is as follows. In Section 2, we introduce the mathematical framework of continued Lehner fractions
and review key definitions. Section 3 describes the methodology for computing the box dimension, detailing the binary word-based
approach. Section 4 presents numerical results and discusses the implications of our findings. Finally, in Section 5, we summarize
our conclusions and suggest directions for future research.

II. METHODOLOGY

The box dimension of set S is defined as
dimB(S) = lim

δ→0

logN(δ)

− log δ
,

where N(δ) is the number of boxes size δ required to cover set S. This dimension characterizes the fractal scaling behavior of the
set as the solution δ decreases.

To estimate the box dimension numerically, we analyze the scaling behavior of unique truncated binary words derived from
points in a given set. Each point in the set is mapped to a binary expansion with fixed precision by repeatedly multiplying the point
by two. If the result is at least one, ’1’ is appended to the binary string, and one is subtracted from the point; otherwise, ’0’ is
appended. This process is repeated for the desired precision; see Fig.1.

Fig. 1. Algorithm to compute the binary expansion of real numbers

To estimate the complexity of the given set, each binary expansion is truncated to a fixed word length, meaning that only the
first few digits of the binary representation are considered. For each chosen word length, the number of unique binary words

Received: February 17, 2025. Reviewed: March 26, 2025. Accepted: March 29, 2025. © 2025 Symbat Duisen, Aiken Kazin,
Shirali Kadyrov. All rights reserved.



106 Journal of Emerging Technologies and Computing (JETC), Vol. 1 No. 1 (2025)

(subsequences of that length) is counted. This process is repeated for multiple word lengths, allowing us to analyze how the number
of distinct binary words grows as the word length increases.

Next, the base-2 logarithm of the number of unique binary words is computed for each word length. This step helps to transform
the data into a form that reveals scaling properties. The resulting data points, which represent the relationship between word length
and the logarithm of the unique word count, are then analyzed using linear regression. Linear regression is used to fit a trend line
to the data, which captures the overall pattern of growth.

Once the trend line is obtained, the box dimension of the set is determined by the slope of the regression line. This slope quantifies
how the number of unique binary words scales with word length and provides a numerical measure of the set’s complexity. A higher
slope indicates greater complexity, while a lower slope suggests a more structured or predictable pattern in the binary expansions.

The computational procedure follows these steps: The Set points are first converted to binary expansions of a specified precision.
For each word length, the binary expansions are truncated, and the number of unique words is counted. The log2 of the unique
word count is computed and stored. Then a linear regression is performed on the relationship between word length and log2 count,
and the slope of the regression line is returned as the estimated box dimension. The results are visualized through a regression plot
that shows the relationship between word length and log2 of unique word counts, where the slope of the fitted trend line provides
an approximation of the box dimension of the underlying fractal set.The following pseudocode Fig.2. summarizes the computational
procedure:

Fig. 2. Algorithm to numerically compute the box dimension

To carry out the experiments we generated one million points uniformly from the interval [1,2]. The distribution of denominator
averages of these numbers are depicted in Fig.3.

III. RESULTS AND DISCUSSION

Fig.4 provide numerical results for estimating the Box dimension of S(ϵ, c) for fixed ϵ=0.01 and c ranging from 1.60 to 1.95.Our
numerical investigation of the box dimension of S(ϵ, c) reveals a clear dependence on c.Using the binary word-based box-counting
method, we estimated the box dimension of these exceptional sets. By comparing the log of unique binary word counts to word
length using linear regression, we found a slope that shows how S(ϵ, c) scales in a fractal way.
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Fig. 3. Histogram plot of relative frequency distribution of average denominators of Lehner expansion

The Fig. 5 suggests that as c increase, the box dimension stabilizes, reinforcing the theoretical expectation that the set of exceptions
forms a measure-zero yet structurally complex subset.

Fig.6(a) depicts a fractal structure generated from continued fraction expansions with a restricted digit set { 1, 2, 3, 4 }. The x and
y coordinates correspond to values derived from odd- and even-indexed terms of randomly generated continued fraction sequences.
The resulting structure reveals an intricate, self-similar distribution within the unit square, illustrating how different digit choices
influence the fractal pattern. Fig.6 (b) shows a similar fractal formation, but based on the Lehner expansion, a variant of continued
fraction representation defined for numbers in the interval [1,2]. Here, the x and y coordinates are determined by evaluating the
odd- and even-indexed Lehner terms as continued fractions. The clustering and density variations within the bounded region reflect
the distinctive number-theoretic properties of the Lehner transformation and its role in generating self-similar structures.

IV. CONCLUSION

In this paper, we investigated the fractal properties of exceptional sets in the Lehner expansion by examining how the average
value of the sequence bn affects the box dimension. By employing numerical fractal analysis, we computed the box dimensions of
these exceptional sets using a binary word-based box-counting method. Our findings demonstrate that the box dimension of S(ϵ, c)
exhibits a clear dependence on c, with the box dimension stabilizing as c increases. This aligns with the theoretical expectation that
these sets, despite having Lebesgue measure zero, exhibit intricate fractal structures.

Our numerical results provide evidence that the exceptional sets in the Lehner expansion possess a non-trivial fractal nature,
reinforcing the idea that continued fraction expansions offer a rich framework for studying complex structures in number theory.
The observed self-similar patterns in Fig 6(a) and 6(b) further illustrate how the Lehner expansion differs from regular continued
fractions while maintaining its own unique fractal characteristics. The histogram of denominator averages (Fig.3) and the scaling
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Fig. 4. Numerical box dimension estimates of S(ϵ, c) for ϵ=0.01 and varying c.

Fig. 5. The graph of box dimensions of S(ϵ, c) as c changes from 1.60 to 1.95

behavior of box dimensions (Fig.5) suggest that the complexity of these sets is deeply tied to the digit distributions in their continued
fraction representations.

Future work could extend this study by exploring different ranges of ϵ and c to further characterize the transition behaviors of
fractal dimensions. Additionally, a theoretical analysis of the scaling behavior observed in our numerical experiments could provide
deeper insights into the number-theoretic properties of Lehner expansions. Overall, this study contributes to the growing body of
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Fig. 6. Two-Dimensional Fractal Structures from Continued Fraction Expansions

research on the fractal geometry of exceptional sets in continued fraction theory, offering new perspectives on their complexity and
structure.
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