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Abstract. This paper provides a research of Unity plugin that helps to 

develop Machine Learning Agents within Unity engine environment. This work 

introduces training a single Machine Learning Agent using both Reinforcement 

Learning and Imitation Learning methods, comparing the results and 

effectiveness. 
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*** 

Аңдатпа. Бұл мақала Unity үшін плагинді зерттеу ұсынады, ол 

қозғалтқыш ортасының ішінде машина оқыту агенттерін дамытуға 

көмектеседі. Бұл жұмыс екі әдісті пайдалана отырып, машиналық 

оқытудың жеке агентін оқыту, Нығайту және Имитацияны оқыту, 

нәтижелер мен тиімділікті салыстыруды ұсынады. 

Түйін сөздер: Информатика, Ойын Дамыту, Жасанды Интеллект, 

Машинамен Оқыту, Unity. 

 

*** 

Аннотация. Эта статья предоставляет исследование плагина для 

Unity, который помогает разрабатывать Агентов Машинного Обучения 

внутри среды движка Unity. Эта работа предоставляет тренировку 

единичного Агента Машинного Обучения, используя оба метода, Обучения 

с Подкреплением и Обучения Имитацией, сравнение результатов и 

эффективность. 
Ключевые слова: Информатика, Разработка Игр, Искусственный 

Интеллект, Машинное Обучение, Unity. 

 
Introduction 

Since the making of computer games, the artificial intelligence 

development improvement issue, which would make games all the more 

fascinating to play, has consistently been important. Regularly artificial 

intelligence was sub-par compared to players in abilities, so computer games 

turned out to be unreasonably straightforward for them. For this situation, the 
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game developers, as a rule, turned to different stunts to change the powers of a 

human and a computer rival. In cases when we are discussing a racing 

simulation, at that point, the alleged "catchup" word is used. The attributes of a 

car controlled by a computer are artificially exaggerated. Subsequently, paying 

little heed to how handy the player is, the computer can play with him as an 

equivalent. Another case - RTS genre games, where the computer is helped by 

additional resources. But such solutions seem to be a cheat and reject the player. 

That is the reason online games are so mainstream, since playing with a genuine 

individual is significantly more interesting. In this manner, the issue is the 

amazingly low or absurd degree of insight of computer rivals, which is the 

second rate compared to the human. With the help of Machine Learning, it will 

take care of this issue and significantly grow the abilities of AI in games. One of 

the most popular researches on this subject is the paper of DeepMind 

Technologies workers. Using Q-Learning [1], they figured out how to actualize 

a calculation fit for playing straightforward Atari 2600 computer games without 

knowing anything about them, aside from the pixels on the screen [2]. In the 

event that more data is given to the neural system (such as, the directions of game 

objects), the use of AI grows. Getting data about the condition of the game world 

is a genuinely basic task if the neural network is designed for a game with AI, 

which suggests the presence of game sources, rather than the work with Atari 

games. In this work, the development and training ML agent, which is able to 

control character in a three-dimensional Unity environment, will be considered. 

The agent’s tasks include maneuvering to avoid enemy traditional AI and getting 

to the aim area. 

 
Fig. 1: The ML Agent is in the field of view and line of sight of the AI, and is 

being pursued. 
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Background 

The Unity game engine was chosen as a tool for the development of a 

learning environment. To train agents The Unity Machine Learning Agents 

Toolkit (ML-Agents) [3] was used. For learning, two methods will be used one 

after another: Reinforcement Learning and Imitation Learning. 

Reinforcement Learning 

The principle thought of Reinforcement Learning is that the t-agent exists 

in a specific S-environment. Whenever the agent may process an action (or more 

than one action) from the arrangement of A-actions. Because of this action, the 

environment changes its state and the agent gets the r-reward[4]. In light of this 

cooperation with the environment, the agent must pick the ideal solution that 

boosts its reward. Reinforcement Learning is particularly useful for taking care 

of issues related to a decision between long-term and short-term profits. It has 

been effectively applied in different fields, for example, robotics, media 

communications, lift management. Likewise, Reinforcement Learning is a 

decent method to create AI in games. On account of games, the game character 

goes about as an agent and his general surroundings and his enemies go about as 

an environment. Each time the character plays out an action that approximates 

him to win, he gets a fortifying reward. For instance, the car agent on a dashing 

track gets a reward after some time if the separation to the finish line is decreased. 

This works in the same logic otherwise - when performing ineffective actions, 

the agent gets a punishment. All together for the agent to perform effective 

actions, it is fundamental for him to get a variety of data describing the condition 

of the environment. The measure of this data ought to be sufficient to guarantee 

that the operator gets all the vital data about the environment, yet not be 

unreasonably huge for the agent to train all the more effectively. Additionally, it 

is important to normalize the data, so the estimations of the signals showing up 

to the agent were inside the range of [0; 1] or [-1; 1]. There are examples of the 

input signal for a car like speed and position on the track. A list of action signals 

would be resulted out of the agent's work. Just as input signals, they require 

normalization. For example, the input signal for a car could be [0; 1] for the gas 

pedal and [-1; 1] for the steering. 
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Figure 2: The Reinforcement Learning cycle 

 

Imitation Learning 

Unlike Reinforcement Learning, which processes with a 

reward/punishment system, Imitation Learning uses a framework dependent on 

the cooperation between a Teacher agent that executes the task and a Student 

agent that imitates the teacher. This is helpful in cases where you don't need your 

AI to have machine-like flawlessness, yet you need your agent to act like a real 

human being [5]. Imitation Learning Support was introduced in ML-Agents v0.3 

Beta. This tool component is a ground-breaking feature that facilitates the 

development of a complex AI using fewer resources. All things considered, the 

procedure of AI development proceeds like this: there are two agents, one is a 

Teacher and another is a Student. Another neural network, a real person or a 

deterministic algorithm may go as a Teacher. The most effective outcomes are 

accomplished if the Teacher is a human being. Next, the learning procedure 

starts. The Teacher plays for some time. The planning shifts relying upon the 

task difficulty. For easier tasks, it takes around 4-6 minutes. For complex tasks, 

it is required about 2 hours. The learning is that while the Teacher agent plays, 

and the Student watches his activities and tries to imitate its Teacher. 

Hide and Escape Scenarios 

In the first two versions of the environment scenario, the goal for the 

agent was to avoid being captured by the traditional AI. The reward was 

calculated by how many seconds the agent would manage to avoid the traditional 
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AI. And in order to enhance learning speed, there were nine parallel 

environments with nine agents that trained simultaneously. After performing 3 

million attempts in the first scenario progress of avoiding continuality occurred. 

But it was inconsistent and by the time there were still cases when the agent 

would be captured too fast. After testing some values of parameters in the 

curriculum, increasing buffer size twice, there were improvements in the 

learning, and results were more effective than in the first scenario, but still, it 

had flaws and inconsistent reward curve after the same 3 million attempts. Then 

a new approach of training was decided to perform. There was a problem that it 

never is possible to avoid the traditional AI indefinitely in a closed area like our 

environment. And even if the agent could eventually train to avoid indefinitely 

it meant that there was no win condition for the environment. It was decided that 

an agent should have an endpoint and the win condition. In this scenario, the 

reward was calculated by 10 minus how many seconds it took for the agent to 

reach the aim area. The expected result was achieved after the same 3 million 

attempts the agent could reach the aim area in less than a second [6]. 

 

 
Figure 3: Reward graph of Hide, Hide2 and Escape scenarios 

 

Human Escape Scenario 

After we reached sufficient results by using Reinforcement Learning it 

was time for the next step which is applying Imitation Learning to training ML 

agent in the same environment. Although the controls for the environment were 

super simple it was very time consuming to record enough data for upcoming 

calculations. Also, a flaw occurred in the behavior of a human being since the 

aim area is randomly placed in the environment, including the character and 

traditional AI, after each attempt. It took some time for a real person to detect its 

aim area and the position of the character. While the agent would know the 

environment state in the first frame of the attempt. And because of this, the best 

result that the agent would achieve after applying Reinforcement Learning was 

a little less than 2 seconds, which is three times more than the result of Escape 
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scenario. But in this scenario, the agent manages to behave like a real person and 

if this result is expected by the developers, then one second is not that important 

comparing to the realism. 

Comparing the methods 

Comparing two methods of learning is difficult since they achieve 

different results and behaviors. And the intersection results may only occur for 

early training which may be random and not satisfactory. It is obvious that 

Imitation Learning approach consumed more time to perform due to recording 

realtime human behavior which also consumes human resources more. If the 

developers seek the most effective results then Reinforcement Learning method 

will be more preferable. And if their intentions are to develop an AI that is close 

to human behavior, then Imitation Learning method is the best choice. However 

in both approaches there were some cases when even after 3 million steps of 

learning, the agent was able to reach the point only when the traditional AI is 

gone in a very long distance. And as the traditional AI patrols the environment 

randomly, there were cases, when the agent was waiting unnecessarily for a long 

time. That happened because the agent does not consider barriers in his path like 

walls and also he does not consider the direction of the traditional AI. 

Conclusion 

 This study explores the opportunities and benefits of single use of 

Reinforcement Leaning and simultaneous use of Reinforcement Learning and 

Imitation Learning in artificial intelligence development for video games. Tools 

for creating the Learning Environment and learning AI agents have been 

considered. Practical recommendations, allowing to optimize the parameters and 

characteristics of the neural network and to conduct more effective training, were 

given. In the final result, a video game agent, which controls the character, 

effectively uses the available game mechanics and whose behavior is similar to 

a human, was created and trained. And also a video game agent who shows the 

most effective result was developed and trained. 
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