

SDU Bulletin: Natural and Technical Sciences. 2020/1 (52).

IRSTI 06.58.45

M. Urmanov1, M. Alimanova2
1,2Suleyman Demirel University, Kaskelen, Kazakhstan

TRAINING A SINGLE MACHINE LEARNING AGENT USING

REINFORCEMENT LEARNING AND IMITATION LEARNING

METHODS IN UNITY ENVIRONMENT

Abstract. This paper provides a research of Unity plugin that helps to

develop Machine Learning Agents within Unity engine environment. This work

introduces training a single Machine Learning Agent using both Reinforcement

Learning and Imitation Learning methods, comparing the results and

effectiveness.

Keywords: Computer Science, Game Development, Artificial

Intelligence, Machine Learning, Unity.

Аңдатпа. Бұл мақала Unity үшін плагинді зерттеу ұсынады, ол

қозғалтқыш ортасының ішінде машина оқыту агенттерін дамытуға

көмектеседі. Бұл жұмыс екі әдісті пайдалана отырып, машиналық

оқытудың жеке агентін оқыту, Нығайту және Имитацияны оқыту,

нәтижелер мен тиімділікті салыстыруды ұсынады.

Түйін сөздер: Информатика, Ойын Дамыту, Жасанды Интеллект,

Машинамен Оқыту, Unity.

Аннотация. Эта статья предоставляет исследование плагина для

Unity, который помогает разрабатывать Агентов Машинного Обучения

внутри среды движка Unity. Эта работа предоставляет тренировку

единичного Агента Машинного Обучения, используя оба метода, Обучения

с Подкреплением и Обучения Имитацией, сравнение результатов и

эффективность.
Ключевые слова: Информатика, Разработка Игр, Искусственный

Интеллект, Машинное Обучение, Unity.

Introduction

Since the making of computer games, the artificial intelligence

development improvement issue, which would make games all the more

fascinating to play, has consistently been important. Regularly artificial

intelligence was sub-par compared to players in abilities, so computer games

turned out to be unreasonably straightforward for them. For this situation, the

SDU Bulletin: Natural and Technical Sciences. 2020/1 (52).

18

game developers, as a rule, turned to different stunts to change the powers of a

human and a computer rival. In cases when we are discussing a racing

simulation, at that point, the alleged "catchup" word is used. The attributes of a

car controlled by a computer are artificially exaggerated. Subsequently, paying

little heed to how handy the player is, the computer can play with him as an

equivalent. Another case - RTS genre games, where the computer is helped by

additional resources. But such solutions seem to be a cheat and reject the player.

That is the reason online games are so mainstream, since playing with a genuine

individual is significantly more interesting. In this manner, the issue is the

amazingly low or absurd degree of insight of computer rivals, which is the

second rate compared to the human. With the help of Machine Learning, it will

take care of this issue and significantly grow the abilities of AI in games. One of

the most popular researches on this subject is the paper of DeepMind

Technologies workers. Using Q-Learning [1], they figured out how to actualize

a calculation fit for playing straightforward Atari 2600 computer games without

knowing anything about them, aside from the pixels on the screen [2]. In the

event that more data is given to the neural system (such as, the directions of game

objects), the use of AI grows. Getting data about the condition of the game world

is a genuinely basic task if the neural network is designed for a game with AI,

which suggests the presence of game sources, rather than the work with Atari

games. In this work, the development and training ML agent, which is able to

control character in a three-dimensional Unity environment, will be considered.

The agent’s tasks include maneuvering to avoid enemy traditional AI and getting

to the aim area.

Fig. 1: The ML Agent is in the field of view and line of sight of the AI, and is

being pursued.

SDU Bulletin: Natural and Technical Sciences. 2020/1 (52).

19

Background

The Unity game engine was chosen as a tool for the development of a

learning environment. To train agents The Unity Machine Learning Agents

Toolkit (ML-Agents) [3] was used. For learning, two methods will be used one

after another: Reinforcement Learning and Imitation Learning.

Reinforcement Learning

The principle thought of Reinforcement Learning is that the t-agent exists

in a specific S-environment. Whenever the agent may process an action (or more

than one action) from the arrangement of A-actions. Because of this action, the

environment changes its state and the agent gets the r-reward[4]. In light of this

cooperation with the environment, the agent must pick the ideal solution that

boosts its reward. Reinforcement Learning is particularly useful for taking care

of issues related to a decision between long-term and short-term profits. It has

been effectively applied in different fields, for example, robotics, media

communications, lift management. Likewise, Reinforcement Learning is a

decent method to create AI in games. On account of games, the game character

goes about as an agent and his general surroundings and his enemies go about as

an environment. Each time the character plays out an action that approximates

him to win, he gets a fortifying reward. For instance, the car agent on a dashing

track gets a reward after some time if the separation to the finish line is decreased.

This works in the same logic otherwise - when performing ineffective actions,

the agent gets a punishment. All together for the agent to perform effective

actions, it is fundamental for him to get a variety of data describing the condition

of the environment. The measure of this data ought to be sufficient to guarantee

that the operator gets all the vital data about the environment, yet not be

unreasonably huge for the agent to train all the more effectively. Additionally, it

is important to normalize the data, so the estimations of the signals showing up

to the agent were inside the range of [0; 1] or [-1; 1]. There are examples of the

input signal for a car like speed and position on the track. A list of action signals

would be resulted out of the agent's work. Just as input signals, they require

normalization. For example, the input signal for a car could be [0; 1] for the gas

pedal and [-1; 1] for the steering.

SDU Bulletin: Natural and Technical Sciences. 2020/1 (52).

20

Figure 2: The Reinforcement Learning cycle

Imitation Learning

Unlike Reinforcement Learning, which processes with a

reward/punishment system, Imitation Learning uses a framework dependent on

the cooperation between a Teacher agent that executes the task and a Student

agent that imitates the teacher. This is helpful in cases where you don't need your

AI to have machine-like flawlessness, yet you need your agent to act like a real

human being [5]. Imitation Learning Support was introduced in ML-Agents v0.3

Beta. This tool component is a ground-breaking feature that facilitates the

development of a complex AI using fewer resources. All things considered, the

procedure of AI development proceeds like this: there are two agents, one is a

Teacher and another is a Student. Another neural network, a real person or a

deterministic algorithm may go as a Teacher. The most effective outcomes are

accomplished if the Teacher is a human being. Next, the learning procedure

starts. The Teacher plays for some time. The planning shifts relying upon the

task difficulty. For easier tasks, it takes around 4-6 minutes. For complex tasks,

it is required about 2 hours. The learning is that while the Teacher agent plays,

and the Student watches his activities and tries to imitate its Teacher.

Hide and Escape Scenarios

In the first two versions of the environment scenario, the goal for the

agent was to avoid being captured by the traditional AI. The reward was

calculated by how many seconds the agent would manage to avoid the traditional

SDU Bulletin: Natural and Technical Sciences. 2020/1 (52).

21

AI. And in order to enhance learning speed, there were nine parallel

environments with nine agents that trained simultaneously. After performing 3

million attempts in the first scenario progress of avoiding continuality occurred.

But it was inconsistent and by the time there were still cases when the agent

would be captured too fast. After testing some values of parameters in the

curriculum, increasing buffer size twice, there were improvements in the

learning, and results were more effective than in the first scenario, but still, it

had flaws and inconsistent reward curve after the same 3 million attempts. Then

a new approach of training was decided to perform. There was a problem that it

never is possible to avoid the traditional AI indefinitely in a closed area like our

environment. And even if the agent could eventually train to avoid indefinitely

it meant that there was no win condition for the environment. It was decided that

an agent should have an endpoint and the win condition. In this scenario, the

reward was calculated by 10 minus how many seconds it took for the agent to

reach the aim area. The expected result was achieved after the same 3 million

attempts the agent could reach the aim area in less than a second [6].

Figure 3: Reward graph of Hide, Hide2 and Escape scenarios

Human Escape Scenario

After we reached sufficient results by using Reinforcement Learning it

was time for the next step which is applying Imitation Learning to training ML

agent in the same environment. Although the controls for the environment were

super simple it was very time consuming to record enough data for upcoming

calculations. Also, a flaw occurred in the behavior of a human being since the

aim area is randomly placed in the environment, including the character and

traditional AI, after each attempt. It took some time for a real person to detect its

aim area and the position of the character. While the agent would know the

environment state in the first frame of the attempt. And because of this, the best

result that the agent would achieve after applying Reinforcement Learning was

a little less than 2 seconds, which is three times more than the result of Escape

SDU Bulletin: Natural and Technical Sciences. 2020/1 (52).

22

scenario. But in this scenario, the agent manages to behave like a real person and

if this result is expected by the developers, then one second is not that important

comparing to the realism.

Comparing the methods

Comparing two methods of learning is difficult since they achieve

different results and behaviors. And the intersection results may only occur for

early training which may be random and not satisfactory. It is obvious that

Imitation Learning approach consumed more time to perform due to recording

realtime human behavior which also consumes human resources more. If the

developers seek the most effective results then Reinforcement Learning method

will be more preferable. And if their intentions are to develop an AI that is close

to human behavior, then Imitation Learning method is the best choice. However

in both approaches there were some cases when even after 3 million steps of

learning, the agent was able to reach the point only when the traditional AI is

gone in a very long distance. And as the traditional AI patrols the environment

randomly, there were cases, when the agent was waiting unnecessarily for a long

time. That happened because the agent does not consider barriers in his path like

walls and also he does not consider the direction of the traditional AI.

Conclusion

 This study explores the opportunities and benefits of single use of

Reinforcement Leaning and simultaneous use of Reinforcement Learning and

Imitation Learning in artificial intelligence development for video games. Tools

for creating the Learning Environment and learning AI agents have been

considered. Practical recommendations, allowing to optimize the parameters and

characteristics of the neural network and to conduct more effective training, were

given. In the final result, a video game agent, which controls the character,

effectively uses the available game mechanics and whose behavior is similar to

a human, was created and trained. And also a video game agent who shows the

most effective result was developed and trained.

References

1 Volodymyr, M., Puigdomenech, A.B., Mehdi, M., Graves, A., Timothy,

P., Lillicrap, T.H., Silver, D., Kavukcuoglu, K. Asynchronous methods for

deep reinforcement learning. arXiv preprint arXiv:1602.01783, 2016.
2 Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M. The Arcade

Learning Environment: An evaluation platform for general agents. J. Artif.

Intell. Res., 47 (2013): pp. 253–279.

SDU Bulletin: Natural and Technical Sciences. 2020/1 (52).

23

3 Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mattar, M., Lange,

D. (2018). Unity: A General Platform for Intelligent Agents. arXiv preprint

arXiv:1809.02627. URL: https://github.com/Unity-Technologies/ml-

agents.
4 Gupta, A., Devin, C., Liu, Y.X., Abbeel, P., Levine, S. Learning invariant

feature spaces to transfer skills with reinforcement learning. In Int. Conf. on

Learning Representations (ICLR), (2017): pp. 1-14.
5 Englert, P., Paraschos, A., Peters, J., Deisenroth, M.P. Model-based

Imitation Learning by Probabilistic Trajectory Matching. Proceedings of the

International Conference on Robotics and Automation, (2013): pp.1-6.
6 Urmanov, M., Alimanova, M., Nurkey, A. Training Unity Machine

Learning Agents using reinforcement learning method, 2019 15th

International Conference on Electronics, Computer and Computation

(ICECCO), Abuja, Nigeria, (2019): pp. 1-4.

