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Abstract

This study investigates the application of physics-informed neural networks (PINNs) for solving Poisson
equations in both 1D and 2D domains and compares them with finite difference method. Additionally, the
study explores the capability of multi-task learning with PINNs, where the network not only predicts the
solution but also estimates unknown parameters. In the case of a second-order differential equation with
a varying coefficient, PINNs successfully approximated both the source term and the varying coefficient
while achieving low training loss. The model demonstrated excellent generalization capabilities and accurate
reconstruction of the underlying system parameters, showing the potential of PINNs in complex physical
simulations.
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I. INTRODUCTION

PDEs form a crucial backbone in the understanding and modeling of various real-world problems. In simple words, PDEs describe
how something changes through time and space based on very well-defined mathematical rules. The central issue with PDEs is
determining whether these rules suffice to guarantee a unique solution to the problem [1] [2].

In most real-life cases, it is impossible to find the exact solutions for such complex equations involving PDEs. This gave rise to
the development of numerical methods for estimating solutions. Some of the popular methods include the finite element method,
finite difference method, finite volume method, and spectral element method. Out of these, FEM is the most advanced with strong
mathematical support for ensuring accurate results, stability, and error control. FEM solvers often employ efficient techniques such
as sparse linear systems or iterative methods, which make them suitable for many practical problems [3].

Most recently, new techniques have emerged as a result of the growth of deep learning which aid in the resolution of PDEs.
One of these is Physics-Informed Neural Networks (PINNs). PINNs are neural networks which, by means of their loss function,
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encode the physical laws described by differential equations to drive the learning process towards solutions that better respect the
underlying physics. PINNs can approximate solutions to partial differential equations and ordinary differential equations and solve
inverse problems, e.g., estimating model parameters from scarce data. They also happen to be tremendously useful for solving
various kinds of PDEs because of their simplicity in implementation and direct incorporation of the underlying physics within the
learning itself.

Despite their adoption, deep learning algorithms, including PINNs, still suffer from high computational costs, complex opti-
mization, and weak theoretical foundations. This study aims to achieve two main objectives. First, it aims to rigorously evaluate
the performance of PINNs in solving PDEs by comparing their accuracy, convergence, and computational efficiency to traditional
numerical methods, particularly the Finite Difference Method (FDM). By applying PINNs to 1D and 2D Poisson equations, the
study assesses their accuracy, error metrics, and computational demands while examining their robustness across different boundary
conditions and domain sizes. Second, the research explores the integration of multi-task learning (MTL) [5] within the PINN
framework to enhance its ability to solve ODE while simultaneously predicting related physical quantities, such as source terms
and varying coefficients. By leveraging shared information across tasks, the study aims to improve the generalization capabilities of
PINNs and develop a unified model capable of solving complex multi-dimensional problems in a single optimization process. We
build upon our prior work [4] and provide additional analysis.

II. RELATED WORKS

The increasing use of neural networks has prompted researchers to utilize a variety of techniques in deep learning for solving
mathematical equations. Raissi et al. [6] present PINNs as a broad framework in deep learning to solve nonlinear forward and inverse
partial differential equations (PDEs). With integration of basic principles from physics, PINNs provide a mathematically strong and
data-effective approach to solving complex spatio-temporal problems using continuous-time and discrete-time Runge–Kutta methods.
This method has been validated by extensive testing across a variety of applications in PDEs, ranging from fluid dynamics to quantum
mechanics.

Ryck et al. [7] present a rigorous numerical analysis of PINNs, systematically classifying errors into approximation, gener-
alization, and training errors. They critically examine how PDE characteristics and domain dimensionality influence accuracy,
identifying training error as a significant constraint on PINN performance. Their findings underscore the importance of solution
regularity and stability in ensuring the reliability of PINN-based computations. Hu et al. [8] investigate the application of PINNs in
computational solid mechanics, addressing limitations associated with sparse, noisy, and high-dimensional data. By integrating prior
physical knowledge, PINNs enhance model generalizability, enforce physical consistency, and improve computational efficiency. The
study provides a comprehensive review of PINN architectures, algorithmic advancements, and their implementation in constitutive
modeling, damage evaluation, and inverse problem-solving. Cuomo et al. [9] provide a thorough review of PINNs and explore
their use in solving a wide variety of partial differential equation (PDE) problems, both fractional and stochastic types. The paper
also discusses developments like Physics-Constrained Neural Networks (PCNNs) and variational hp-VPINNs and touches upon
optimization algorithms, network architectures, and loss function setup. Though PINNs have already shown great promise, the paper
identifies open problems to be solved in order to enhance their reliability and usability.

Grossmann et al. [10], past comparisons between PINNs and other numerical methods have shown that each approach has
strengths and weaknesses. However, the paper does not clearly explain these differences, making it harder to assess how competitive
PINNs are for different types of problems. While the study presents specific cases where PINNs struggle or perform well, it lacks
a systematic discussion of key factors such as computational cost, accuracy, stability, and problem structure. Without this detailed
comparison, it is difficult to determine in which scenarios PINNs might be advantageous or where traditional methods like FEM
remain superior. The findings suggest that FEM remains the more reliable method, particularly for high dimensional PDEs. In light of
the findings from previous works, we conduct a comprehensive comparison between the well-established FDM and the state-of-the-
art PINNs in the context of solving non-complex PDEs, where FDM has demonstrated superior accuracy and efficiency. The FDM,
known for its robustness and reliability, has long been a standard technique for numerically solving PDEs with relatively simple
geometries and boundary conditions. On the other hand, PINNs represent an emerging approach in deep learning. Additionally, we
extend our comparison by framing the development of the PINN method within the context of multi-task learning (MTL). In this
setting, the PINN is treated as an MTL model, enabling it to simultaneously learn from multiple related tasks. This approach not
only facilitates a more efficient learning process but also allows for the adaptation of the PINN to a broader range of problems by
sharing knowledge between tasks.
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III. MATHEMATICAL BACKGROUND

In this section, we explain the mathematical background of the methods used in this work.

A. Poisson Equation
The Poisson equation is one of the most basic PDEs, which results in a potential field created by a given source. It provides

significant applications to physics and engineering, modeling electrostatics, heat conduction, and fluid dynamics among many others
[11] [12].

In one dimension, the Poisson equation is given by:

d2u(x)

dx2
= f(x) (1)

where u(x) is the unknown function, f(x) is a source term.
In such cases, the domain is normally an interval [a, b] and the boundary conditions are often given at both ends, say in the

following form of Dirichlet boundary conditions:

u(a) = u0, u(b) = u1

In two dimensions, the Poisson equation generalizes to:

∇2u(x, y) = f(x, y) (2)

where ∇2 is the 2D Laplacian operator, u(x, y) represents the unknown function, and f(x, y) is called the source term. In
two dimensions, it can normally be a rectangular region or even more complicated geometry. On edges, boundary conditions are
imposed. There may also be Dirichlet boundary conditions on these. A typical Dirichlet boundary condition takes the following
form: u(x, y) = g(x, y) on the boundary of the domain.

The accuracy of the solution approximations for the 1D and 2D Poisson equations is evaluated using the L2 norm and relative
error. The L2 norm of a vector v = [v1, v2, . . . , vn] is defined as:

∥v∥2 =

√√√√ n∑
i=1

v2i .

This norm gives the size of the magnitude of a vector in Euclidean space. To verify these results for accuracy, we calculate the
L2 relative error between the computed solution û and the exact solution u defined as:

L2 =
∥û− u∥2
∥u∥2

. (3)

B. Physics-Informed Neural Networks
Let uθ(x, y) denote the neural network approximation of u(x, y) where θ is used to denote the parameters of the network.

The network architecture considered here is a fully connected feed-forward neural network, such that the application of activation
functions is performed layer by layer. It can be written as:

uθ(x, y) = NNθ(x, y)

The network layers are defined as follows:

x(i+1) = σ
(
w(i)x(i) + b(i)

)
for each hidden layer, and the output layer is linear. The residual of the PDE is defined as:

R(x, y) =
∂2uθ

∂x2
+

∂2uθ

∂y2
− f(x, y)

where f(x, y) is the source term. The PDE loss is computed as the mean squared error of the residual over a set of domain
points (xi, yi):
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LPDE =
1

N

N∑
i=1

R(xi, yi)
2 (4)

The boundary conditions loss is computed similarly, where the loss for boundary points (xj , yj) is given by:

LBC =
1

M

M∑
j=1

(uθ(xj , yj)− u(xj , yj))
2 (5)

The total loss function combines the PDE residual loss and the boundary conditions loss:

L(θ) = LPDE + LBC (6)

C. Finite Difference Method (FDM)
The FDM is a numerical method for the solution of PDEs that is based on discretizing their solutions on a lattice of points that

discretize the domain. Based on this concept, the FDM relies upon approximating the derivatives of an unknown function in terms
of finite differences that replace the PDE by a set of algebraic equations.

First, consider the one-dimensional Poisson equation:

d2u(x)

dx2
= f(x)

Using a finite difference scheme, the second derivative can be approximated by the following way:

d2u(x)

dx2
≈

u(x+∆x)− 2u(x) + u(x−∆x)

(∆x)2
(7)

where ∆x is the step size and u(x) is the unknown function at the grid points. By discretizing the domain [a, b] with a grid of
points, we convert the continuous PDE into a system of algebraic equations which can be solved numerically.

In two dimensions, the Poisson equation is given by:

∇2u(x, y) = f(x, y)

where ∇2 is the Laplacian operator:

∇2 =
∂2

∂x2
+

∂2

∂y2
.

The second derivatives in the x and y directions are approximated by finite differences. The Laplacian operator in 2D is
approximated as:

∇2u(x, y) ≈
u(x+∆x, y) + u(x−∆x, y)− 2u(x, y)

(∆x)2
+

u(x, y +∆y) + u(x, y −∆y)− 2u(x, y)

(∆y)2
(8)

where ∆x and ∆y are increments in steps in directions x and y, respectively.
The FDM discretizes both the domain for solving both the 1D and 2D Poisson equation and then solves for resulting algebraic

equations. Iterating through each grid point, u(x) or u(x, y) values would be computed based on the finite difference approximation
offered by the PDE. Boundary conditions would be specified along the domain’s boundary in terms of either Dirichlet conditions.
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IV. METHODS

This paper focuses on constructing and improving PINNs for solving the 1D and 2D Poisson equations and comparing them
with the FDM.

To begin with, FDM is the first approach we had to study to solve the Poisson equation. The domain of the 1D example is split
into a lattice grid, and the equation is solved through second-derivative approximation. The same procedure is applied in 2D, in
which both spatial dimensions are discretized. The numerical solution is obtained and compared to the calculated exact solutions
in order to check accuracy using the L2 relative error.

At this stage, the PINN is implemented to solve the equations. The neural network is trained by minimizing a loss function that
comprises the Poisson equation and the boundary conditions. The training is therefore carried out in two steps: firstly, with the
Adam optimizer to fit the parameters of the model, and subsequently with the L-BFGS method for fine-tuning.

Latin Hypercube Sampling, in both 1D and 2D scenarios, provides points for model analyses. The network is trained to provide
a set of boundary conditions. The performance of the model is determined by comparing the output of the neural network with a
known solution using the relative L2 norm.

Ultimately, we applied the FDM to a thermal problem involving a second-order ordinary differential equation (ODE). We split
the spatial domain into parts, provided intervals, and boundary conditions at both ends. The problem was solved iteratively until the
difference between subsequent values was less than some small predefined threshold. The material properties and source term were
represented as functions of spatial position. The PINN solution was compared to the one obtained using multivariate interpolation
to assess its accuracy. Then, the forward and inverse problem was solved using a PINN structure. The PINN was based on a
feedforward neural network with hidden layers that were trained to estimate temperature and the source term via a learned loss
function. The model was validated against FDM and observational data. The code was written in Python and is available on GitHub:
https://github.com/hardkazakh/pinn-vs-fdm

V. EXPERIMENTAL RESULTS

In this section, we will solve 1D and 2D Poisson equations using FDM and PINNs. We will also use the PINNs approach to
multi-task learning.

A. 1D Poisson equation
Let us investigate the 1D Poisson equation defined as:

d2u(x)

dx2
= 16x7e−x4

− 20x3e−x4
, x ∈ [0, 1], (9)

with Dirichlet boundary conditions:

u(0) = 0, u(1) = e−1.

In Section III-C, we explained that the first step to solving PDEs with the FDM is to rewrite the equation in a weak form. We
already did this for the Poisson equation. The next step is to create a mesh. This is like breaking the interval [0, 1] into small pieces,
called cells. The number of cells is 512. More cells mean the grid is finer, which gives a more accurate solution, but it also takes
more time and computing power.

For solving the 1D Poisson equation using PINNs, there are three design parameters that we need to specify before training.
The first step is choosing a loss function. Following the vanilla PINNs approach, we evaluate the goodness of the solution using
the discretised mean squared error over the PDE, boundary, and initial conditions.

The second design parameter is the neural network architecture, that is, the type of neural network, the activation function, and
the number of hidden layers and nodes. For the 1D Poisson case, we train feed-forward dense neural networks with tanh as the
activation function. We use the result on the architecture of [20, 20, 20, 1].

The approximations of the 1D Poisson equation solution using FDM and PINNs are compared to the exact solution on a [0, 1]

interval with 512 points. Fig 1 shows the exact solution and the approximations. One PINN setup, with only one hidden layer and
one node, performs poorly and fails to satisfy the boundary conditions. All approximations are very close to the exact solution.

For the 1D Poisson equation, the relative error for the FDM is calculated to be 7.26 × 10−8, while the relative error for the
PINN approach is 5.63 × 10−6. These results show that FDM provides a more accurate approximation of the solution compared
to PINNs in the 1D case.
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Fig. 1. Comparison of solutions: 1-Exact, 2-FDM, and 3-PINN

B. 2D Poisson equation
Let us now investigate 2D Poisson equation defined as:

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 2

(
x4(3y − 2) + x3(4− 6y) + x2

)
. (10)

The boundary conditions are:

u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0.

The analytical solution of the equation is:

u(x, y) = (x− 1)2y(y − 1)2x2.

The approximations of the 2D Poisson equation solution using FDM and PINNs are compared to the exact solution on the
[0, 1] × [0, 1] domain, discretized with a 1000 × 1000 grid. The neural networks are trained using the tanh activation function
with an architecture of [60, 60, 60, 1].

Fig 2 shows the analytical and approximate solutions of the 2D Poisson equation. For the 2D Poisson equation, the L2 relative
error for the FDM approximation is 2.21 × 10−4, while for the PINN, it is 6.01 × 10−3. Again, the FDM method shows a
significantly lower error compared to the PINN, indicating that FDM achieves a more precise solution in both 1D and 2D cases.

These error analyses again confirm the accuracy of the FDM approach in solving Poisson equations, especially in comparison
with PINNs, which showed higher relative errors in both 1D and 2D problems. However, in higher-order equations, PINN can give
better results. We consider this in our future research.

Fig. 2. Comparison of solutions: 1-PINN, 2-Exact, and 3-FDM.
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C. PINNs approach for multi-task learning (MTL)
PINNs embed both forward and inverse problems under one framework by embedding the data and physical laws in the loss

function of the neural network. The network jointly predicts the forward solution of a PDE and estimates unknown parameters or
inputs (inverse problem) through the optimization of one combined loss function that considers residual of PDE, boundary conditions,
and discrepancies between model predictions and observations. This capability of handling both tasks together makes PINNs highly
effective at solving problems that involve solution estimation and identification of parameters.

The problem is defined by the following second-order differential equation:

d2U(x)

dx2
− a(x)U(x) = Q(x), 0 < x < L, (11)

where Q(x) represents the source term and a(x) describes the varying coefficient. Specifically, the source term is given by:

Q(x) = 1 + b1 sin(w1x)

and the varying coefficient is defined as:

a(x) = b1 +
x

1 + x2
.

The boundary conditions for the differential equation are given by: U(0) = 1, U(L) = 3. The problem now involves the solution
of this second-order differential equation along with the boundary conditions shown above. Q(x), the source function, incorporates
a sine function that could model some periodic influence in the system. This coefficient, a(x), depends on the position x in the
domain; therefore, this makes the equation more complicated, introducing spatial dependence in the solution.

The aim of Experiment 1 is to approximate both the source term Q(x) and the solution U(x) for the given differential equation.
PINN simultaneously predicts the solution U(x) while reconstructing the source term Q(x) using the varying coefficient a(x) as
part of the system.

Fig. 3. Visualization of FDM Solution and varying coefficient of a(x)

The PINN model was trained for 40,000 epochs. Initially, the loss function was quite large, but it gradually decreased as the
model learned. By the end of the training, the loss had reduced to 1.87×10−2, indicating that the model had learned the underlying
physics of the problem. The predictions made by the PINN for the differential equation solution were then analyzed and aligned
with the FDM results. These predictions were accurate not only at the observed points but also at unobserved locations, highlighting
the PINN’s ability to generalize well across the entire domain. Fig 3 presents the visualization of the PINN’s predicted temperature
distribution and the corresponding predicted source term.
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The aim of Experiment 2 is to approximate both the varying coefficient a(x) and the solution U(x). By incorporating a(x) as
an unknown parameter in the system, the model predicts the solution U(x) while reconstructing a(x) from the given data.

The PINN model was trained for 40,000 epochs. Initially, the loss function exhibited high values, but with training, it gradually
decreased as the model captured the intricate relationships within the system. By the end of the training, the loss had reduced to
3.1563× 10−2, demonstrating that the model effectively learned both the solution and the coefficient.

Fig. 4. Visualization of PINN Solution and prediction of a(x)

Fig 4 illustrates the visualization of the PINN’s predictions for the temperature distribution and the reconstructed varying
coefficient. The predicted solution from the PINN closely aligns with the numerical solution obtained using FDM.

VI. DISCUSSION & CONCLUSION

In this paper, we have discussed using PINNs and FDM to solve the problem in both 1D and 2D. From our comparison, it
was illustrated that even though PINNs offer a flexible and data-driven approach, traditional numerical methods such as FDM offer
improved accuracy in such a case.

For the 1D Poisson equation, FDM’s relative error was calculated as 7.26× 10−8 and PINN’s relative error was calculated as
5.63× 10−6. In a similar manner, for the 2D Poisson equation, FDM’s relative error was calculated as 2.21× 10−4, which was
much lesser than PINN’s error value, which was 6.01× 10−3. These findings establish that FDM gives a better approximation in
problems involving Poisson.

Additionally, we have explained multi-task learning with PINNs. We have witnessed that PINN reconstructed variable a(x)

and source term Q(x) with decreasing loss to 1.87 × 10−2 and 3.15 × 10−2, respectively, in 40,000 epochs. The PINN model
had strong generalization capability and predicted with high accuracy even at unseen locations. Regarding the computational
complexity, PINN’s training to solve the 2D Poisson equation was very time-consuming. This reflects high computational cost
in high-dimensional PDEs, whose practicality and efficiency depend greatly upon high-end GPU access. The longer time to train
reflects a major disadvantage of PINNs compared to standard numerical methods in problems requiring quick and scalable solutions.
We believe that PINNs have more errors than FDM because it has problems in optimizations and it has problems in fine solution
feature capture.

Overall, our findings indicate that while PINNs do not presently outperform FDM in terms of accuracy for non-complex equations
because they can be flexible and can perform multi-task learning, they provide a reasonable alternative to complex PDEs when
conventional numerical methods have limitations.

In the present study, our aim will be to improve PINN’s performance and efficiency with more advanced neural network
architectures and learning techniques to solve other PDEs. One direction would be to design hybrid algorithms by combining
PINNs with traditional numerical methods such as FDM. With FDM’s high-precision performance in structured grid regions and
PINNs’s adaptability in unstructured or sparsity regions, a more effective and robust framework can be established. This hybrid
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method can rectify PINN’s limitation in high-precision attainment without sacrificing PINN’s ability to solve inverse problems and
multi-task learning.
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