
41 Journal of Emerging Technologies and Computing (JETC), Vol. 3 No. 3 (2025)

Article

Well-Posedness for a Degenerate
Hyperbolic Equation with Weighted

Initial Data
Nurbek Kakharman 1,2 and Aigul Zhumabayeva 1

1Department of Mathematics and Natural Sciences, SDU University, Almaty, Kazakhstan
2Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

DOI: 10.47344/bgz8em14
Abstract

The focus of this study is an initial-boundary value problem associated with the degenerate hyperbolic
equation t∂ttu+ 1

2
∂tu−∆u = g in a bounded domain. Due to the singularity at t = 0, standard initial

conditions lead to an ill-posed problem. To achieve solvability of the problem, we introduce a ”modified”
Cauchy problem using weighted initial conditions for this degeneracy. The main result of the study is the
proof of the well-posedness of this problem within the framework of classical Sobolev spaces, as well as
the obtaining of a priori estimates of the solution. Furthermore, the general boundary conditions for the
one-dimensional equation were derived by using the restriction and extension theory.

Keywords: degenerate hyperbolic equation, weighted initial condition, well-posed problem, spectral decomposition, weighted
Sobolev space

I. INTRODUCTION

Degenerate partial differential equations are a significant and challenging area of mathematical physics [1]. Among them,
degenerate hyperbolic equations, characterized by change of type or loss of strict hyperbolicity in certain domains or at certain
moments in time, are of particular interest [2], [3]. Such equations are often found in mathematical models of various physical
processes, especially in fluid and gas dynamics, and they arise naturally in classical elasticity and differential geometry.

The theory of strictly hyperbolic equations provides a clear and well-developed framework for the well-posedness of the Cauchy
problem. However, the study of degenerate hyperbolic equations is associated with significant difficulties, see [4]–[7]. This complexity
arises when a hyperbolic equation degenerates when the coefficients associated with lower-order terms within the hyperbolic equation
become singular (see [8], [9]).

In general, obtaining well-posed solutions to the Cauchy problem for degenerate cases requires either imposing conditions on
the coefficients or considering a ”modified” initial condition. As noted in classical works [10], [11], the standard Cauchy problem
for such equations may not be well-posed without appropriate modifications. Therefore, a natural approach is to study a weighted
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Cauchy problem, in which the initial data are specified in a weighted form. This weighted formulation is essential to compensate
for the singularity of the operator at t = 0 and to ensure that the solution remains bounded. For more details, see [12], [13] and
the references therein.

In this work, we investigate a modified Cauchy problem for a degenerate hyperbolic equation considered in the cylindrical domain
D = (0, T ) × Ω, where Ω ⊂ Rn and T > 0. In addition, we provide a characterization of all possible regular boundary value
problems associated with the corresponding singular ordinary differential equation by applying the restriction and extension theory,
specifically relying on Otelbaev’s abstract theorem.

II. PRELIMINARIES

A. Inhomogeneous linear ODE with singular coefficient
Let us consider the following ODE

ly := ty′′(t) +
1

2
y′(t) + λy(t) = f(t), t ∈ (0, T ), (1)

where λ > 0 is a fixed constant and f(t) is a given function.
First, we begin with the corresponding homogeneous equation

ty′′(t) +
1

2
y′(t) + λy(t) = 0. (2)

It is well known that a fundamental system of solutions to this equation is given by the functions

y1(t) = cos 2
√
λt, y2(t) = sin 2

√
λt.

To construct the general solution of (1), we apply the method of variation of parameters. We seek a solution in the form

y(t) = C1(t)y1(t) + C2(t)y2(t), (3)

where C1(t) and C2(t) are functions to be determined. By imposing the standard condition C′
1(t)y1 +C′

2(t)y2 = 0, we arrive at
the following linear system for the unknown derivatives C′

1(t) and C′
2(t):

C′
1(t)y1(t) + C′

2(t)y2(t) = 0,

C′
1(t)y

′
1(t) + C′

2(t)y
′
2(t) =

f(t)

t
.

(4)

Substituting the explicit forms expressions for y1 and y2 and their derivatives we obtain
C′

1(t) cos 2
√
λt+ C′

2(t) sin 2
√
λt = 0,

−C′
1(t)

√
λ√
t
sin 2

√
λt+ C′

2(t)
√
λ√
t
cos 2

√
λt =

f(t)

t
.

(5)

We determine the derivatives C′
1(t) and C′

2(t) from the linear system (5) by using Cramer’s rule. We start by calculating the
Wronskian determinant of the fundamental system

W = det

 cos 2
√
λt sin 2

√
λt

−
√

λ

t
sin 2

√
λt

√
λ

t
cos 2

√
λt

 ,

W =

√
λ

t
cos 2

√
λt · cos 2

√
λt−

(
−
√

λ

t
sin 2

√
λt

)
· sin 2

√
λt

=

√
λ

t

[
cos2 2

√
λt+ sin2 2

√
λt
]
=

√
λ

t
.

(6)

Next, we compute the auxiliary determinants W1(t) and W2(t)

W1 = det

 0 sin 2
√
λt

f(t)

t

√
λ

t
cos 2

√
λt

 = −
f(t)

t
sin 2

√
λt, (7)
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W2 = det

 cos 2
√
λt 0

−
√

λ

t
sin 2

√
λt

f(t)

t

 =
f(t)

t
cos 2

√
λt. (8)

Consequently, the derivatives of the parameters are

C′
1(t) =

W1

W
= −

sin 2
√
λt

√
λt

f(t), (9)

C′
2(t) =

W2

W
=

cos 2
√
λt

√
λt

f(t). (10)

Integrating these expressions over the interval (0, t), we find the functions C1(t) and C2(t)

C1(t) =

∫ t

0
−
sin 2

√
λξ

√
λξ

f(ξ)dξ + c1, (11)

C2(t) =

∫ t

0

cos 2
√
λξ

√
λξ

f(ξ)dξ + c2, (12)

where c1 and c2 are integration constants.
Inserting the obtained functions C1(t) and C2(t) into the general solution yields

y(t) = − cos 2
√
λt

∫ t

0

sin 2
√
λξ

√
λξ

f(ξ)dξ + sin 2
√
λt

∫ t

0

cos 2
√
λξ

√
λξ

f(ξ)dξ

+ c1 cos 2
√
λt+ c2 sin 2

√
λt.

(13)

To simplify the expression for the general solution (13), we group the terms under a single integral,

y(t) =

∫ t

0

f(ξ)
√
λξ

[
− cos 2

√
λt sin 2

√
λξ + sin 2

√
λt cos 2

√
λξ
]
dξ

+ c1 cos 2
√
λt+ c2 sin 2

√
λt.

(14)

Applying the sine difference formula, the general solution admits the compact representation:

y(t) =

∫ t

0

f(ξ)
√
λξ

sin 2
√
λ(

√
t−

√
ξ)dξ + c1 cos 2

√
λt+ c2 sin 2

√
λt. (15)

We next introduce the Cauchy problem associated with the operator l. To determine modified initial conditions, we investigate
the behavior of the solution (15) as t → 0. First, we examine y(0)

y(0) = lim
t→0

y(t) = c1 · 1 + c2 · 0 = c1.

Hence, the requirement y(0) = 0 forces
c1 = 0.

Let us next compute the derivative y′(t). Differentiating expression (15) and simplifying yields

y′(t) =

∫ t

0

f(ξ)
√
ξt

cos
(
2
√
λ(

√
t−

√
ξ)
)
dξ + c2

√
λ

√
t
cos 2

√
λt. (16)

Because the term c2
√
λ√
t
cos 2

√
λt is unbounded as t → 0, the derivative y′(t) itself cannot be prescribed directly at t = 0.

Instead, we analyze the limit of the weighted expression
√
t d
dt
y(t):

lim
t→0

√
t
d

dt
y(t) = 0 + c2

√
λ.

For this weighted limit to remain finite, we must take c2 = 0. This choice provides the second initial condition

lim
t→0

√
t
d

dt
y(t) = 0.
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As a result, the conditions defining a well-posed problem for the differential operator (1) are given below

y(0) = 0, lim
t→0

√
t
d

dt
y(t) = 0.

We can now state the full Cauchy problem asty′′(t) + 1
2
y′(t) + λy(t) = f(t),

y(0) = 0, limt→0+
√
t d
dt
y(t) = 0.

(17)

And finally, the solution to the Cauchy problem is as follows

y(t) =

∫ t

0

f(ξ)
√
λξ

sin 2
√
λ(

√
t−

√
ξ)dξ. (18)

B. Eigenvalue problem for the Laplace operator
In this section, we provide the definition of the eigenvalue problem for the Laplace operator with homogeneous Dirichlet boundary

conditions, followed by the associated lemma and theorem:−∆φ(x) = λφ(x), x ∈ Ω,

φ(x) = 0, x ∈ ∂Ω.
(19)

The eigenfunctions {φk(x)}∞k=1 of the self-adjoint problem (19) form a complete orthonormal basis for L2(Ω), with eigenvalues
satisfying 0 < λ1 ≤ λ2 ≤ · · · → ∞ (see, e.g., [14]).

Lemma II.1 (Orthogonality and simplicity [14]). The eigenfunctions {φk(x)}∞k=1 corresponding to the eigenvalues λk form an
orthonormal system in L2(Ω), i.e.,

(φk, φm)L2(Ω) =

∫
Ω
φk(x)φm(x) dx = δkm,

where δkm is the Kronecker delta.

Theorem II.2 (Spectral decomposition and completeness [14]). The system of eigenfunctions {φk(x)}∞k=1 is complete in L2(Ω).

III. MAIN RESULTS

A. Formulation of the Modified Cauchy Problem in a Bounded Domain
Let Ω ⊂ Rn be a bounded domain with a sufficiently smooth boundary, specifically ∂Ω ∈ C2. We introduce the cylindrical

domain defined by D = (0, T )× Ω. Given a source function g ∈ L2(D), we seek a function u that satisfies

Lu = tutt +
1

2
ut −∆u = g(t, x), (t, x) ∈ D. (20)

The equation is supplemented by the following initial conditions

u(0, x) = 0, lim
t→0

√
tut(t, x) = 0, x ∈ Ω, (21)

and the homogeneous Dirichlet boundary condition

u(t, x)
∣∣
x∈∂Ω

= 0, t ∈ [0, T ]. (22)

To solve problem (20)–(22) we employ the method of spectral decomposition. Consider the complete orthonormal system
{φk(x)}∞k=1 in L2(Ω), consisting of eigenfunctions of the spectral problem (19), and let {λk}∞k=1 be the corresponding eigenvalues.

According to Theorem II.2, both the solution and the source function can be expanded into Fourier series

u(t, x) =

∞∑
k=1

φk(x)yk(t), g(t, x) =

∞∑
k=1

φk(x)gk(t), (23)
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where the expansion coefficients are given by

yk(t) =

∫
Ω
φk(x)u(t, x) dx, gk(t) =

∫
Ω
φk(x)g(t, x) dx. (24)

From the initial conditions (21), it follows that for the coefficients yk(t) satisfy

yk(0) = 0, lim
t→0

√
ty′k(t) = 0.

Substitution of the series representation (23) into equation (20) reduces the partial differential equation to a one-dimensional
singular Cauchy problem for the coefficient yk

lkyk := ty′′k (t) +
1

2
y′k(t) + λkyk(t) = fk(t), (25)

yk(0) = 0, lim
t→0

√
ty′k(t) = 0. (26)

As established in the previous sections, the homogeneous equation lkyk = 0 possesses solutions spanned by trigonometric
functions giving the general homogeneous solution as

yk,h(t) = C1 cos(2
√

λkt) + C2 sin(2
√

λkt). (27)

Employing the variation of parameters method and applying the initial conditions (26) provides the unique solution to the singular
Cauchy problem (25)–(26):

yk(t) =

∫ t

0

fk(ξ)√
λkξ

sin
[
2
√

λk(
√
t−

√
ξ)
]
dξ. (28)

Finally, substituting expression (28) back into (23) leads to the following representation of the solution to (20)–(22):

u(t, x) =

∞∑
k=1

φk(x)

(∫ t

0

fk(ξ)√
λkξ

sin
[
2
√

λk(
√
t−

√
ξ)
]
dξ

)
. (29)

B. Sobolev Regularity for the Singular ODE
We introduce the weighted Sobolev space W 2

2,t(0, T ) = {y : y ∈ L2(0, T ) and ty′′ ∈ W 1
2 (0, T )} with the norm

∥y∥W2
2,t(0,T ) :=

∥∥∥∥t d2dt2
y

∥∥∥∥
L2(0,T )

+

∥∥∥∥ d

dt
y

∥∥∥∥
L2(0,T )

+ ∥y∥L2(0,T ). (30)

Lemma III.1. Let fk ∈ L2(0, T ). Then the solution yk ∈ W 2
2,t(0, T ) of the one-dimensional singular equation (25)–(26) satisfies

the estimate
∥yk∥W2

2,t(0,T ) ≤ c∥fk∥L2(0,T ),

where c is a constant.

Proof. Let v =
√
t and define w(v) = y(v2). Then y(t) = w(

√
t), and computing derivatives yields

w′′(v) + 4λw(v) = 4f(v2).

The solution (28) has the form

w(y) =
2
√
λ

∫ v

0
sin
(
2
√
λ(v − s)

)
g(s)ds,

with derivative
w′(v) = 4

∫ v

0
cos
(
2
√
λ(v − s)

)
g(s)ds.

Define g(v) = f(v2). Since f ∈ L2(0, T ), we have∫ √
T

0
v|g(v)|2dy < ∞.
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We show yk ∈ W 1
2 (0, T ) by proving∫ T

0
|yk(t)|2dt < ∞ and

∫ T

0
|y′k(t)|

2dt < ∞.

Using the substitution t = v2, these become∫ √
T

0
v|w(v)|2dv < ∞ and

∫ √
T

0

|w′(v)|2

v
dv < ∞.

From the solution representation, we have the bounds

|w(v)| ≤
2
√
λ

∫ v

0
|g(s)|ds, |w′(v)| ≤ 4

∫ v

0
|g(s)|ds.

Using the bound on w, Cauchy–Schwarz, and Fubini’s theorem, we obtain∫ √
T

0
v|w(v)|2dv ≤

16

5λk
T 5/4

∫ √
T

0
s|g(s)|2ds < ∞.

Similarly, with the bound for w′, we obtain∫ √
T

0

|w′(v)|2

v
dv ≤ 64T 1/4

∫ √
T

0
s|g(s)|2ds < ∞.

Using the transformation t = v2, we obtain the following L2 bounds

∥yk∥L2(0,T ) ≤
4

√
5λk

T 5/8∥fk∥L2(0,T ), (31)

and
∥y′k∥L2(0,T ) ≤ 4T 1/8∥fk∥L2(0,T ). (32)

Which concludes ∫ T

0
|yk(t)|2dt < ∞ and

∫ T

0
|y′k(t)|

2dt < ∞.

Equation (25) can be rearranged to express the second derivative term:

ty′′k (t) = fk(t)−
1

2
y′k(t)− λkyk(t),

From this, it can be concluded that∥∥ty′′k∥∥L2(0,T )
≤
∥∥fk∥∥L2(0,T )

+
∥∥1
2
y′k
∥∥
L2(0,T )

+
∥∥λkyk

∥∥
L2(0,T )

≤c
∥∥fk∥∥L2(0,T )

. (33)

C. Solution estimates for general case
We define the (−∆x)

1
2 acting on a function g ∈ L2(D) by the following rule

(−∆x)
1
2 g =

∞∑
k=1

gk(t)
√

λkφk(x), (34)

with the norm ∥(−∆x)
1
2 g∥2

L2(D)
=

∞∑
k=1

λk|gk(t)|2.

Let W 2,2
2,t (D) be the weighted Sobolev space with the norm

∥u∥
W

2,2
2,t

:=

∥∥∥∥t ∂2u

∂t2

∥∥∥∥
L2(D)

+

∥∥∥∥∂u∂t
∥∥∥∥
L2(D)

+ ∥∆u∥L2(D) + ∥u∥L2(D). (35)
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Theorem III.2. Assume that g∈L2(D) and that the condition
∞∑

|m|=1

λm |gm (ξ)|2 < ∞ holds. Then there exists a unique solution u ∈ W 2,2
2,t (D) of the problem (20)- (22) that satisfies the

following inequality∥∥∥∥t ∂2u

∂t2

∥∥∥∥
L2(D)

+

∥∥∥∥∂u∂t
∥∥∥∥
L2(D)

+ ∥∆xu∥L2(D) + ∥u∥L2(D) ≤ c∥g∥L2(D) + c0

∥∥∥(−∆x)
1
2 g
∥∥∥
L2(D)

,

with constants c and c0 depending only on T.

Proof. By Parseval’s identity, we have

∥u∥2
L2(D)

=
∞∑

k=1

|yk(t)|2 dt ≤ c1

∫ T

0

∞∑
k=1

(
1

λk
|gk(t)|2

)
dt.

By (31) and
∞∑

k=1

1
λk

∥gk(t)∥2 ≤ 1
λ1

∞∑
k=1

∥gk(t)∥2, we obtain

∥u∥2
L2(D)

≤ c1

∞∑
k=1

∥gk∥2L2(0,T )
= c1∥g∥2L2(D)

.

Similarly, by (32) we get ∥∥∥∥∂u∂t
∥∥∥∥2
L2(D)

≤ c2∥g∥2L2(D)
.

Similar considerations apply to ∆xu, from (31), we have

∥∆xu∥L2(D) =

∞∑
k=1

|λkyk(t)|2 ≤ c∥(−∆x)
1
2 g∥2

L2(D)
.

Finally, rewriting equation (20) as

t
∂2u

∂t2
= g(t, x)−

1

2

∂u

∂t
+∆u.

Now it is easily seen that ∥∥∥∥t ∂2

∂t2
u

∥∥∥∥
L2(D)

≤ c∥g∥L2(D) + c0

∥∥∥(−∆x)
1
2 g
∥∥∥
L2(D)

. (36)

This proves the theorem.

IV. REGULAR BOUNDARY VALUE PROBLEM FOR THE SECOND-ORDER EQUATION

The aim of this section is to obtain general boundary conditions for equation (1) in the one-dimensional case. Our approach
relies on extension and restriction theory for differential operators, and in particular on the abstract theorem of Otelbaev [15].

Defining the correct boundary conditions requires deriving the conjugate problem for the operator l (1). The calculation of the
scalar product yields

⟨ty′′ +
1

2
y′ + λy,w⟩ = ⟨y, tw′′ +

3

2
w′ + λw⟩.

Thus, the conjugate operator is

l∗w = t w′′ +
3

2
w′ + λw.

Consequently, the Cauchy problem admits the following conjugate formulationtw′′(t) + 3
2
w′(t) + λw(t) = ϕ(t),

w(1) = 0, w′(1) = 0.
(37)

The homogeneous problem

tw′′(t) +
3

2
w′(t) + λw(t) = 0,
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has a general solution of the following form

w(t) = −q1

√
λ

t
sin 2

√
λt+ q2

√
λ

t
cos 2

√
λt. (38)

where q1, q2 are arbitrary constants.
Now let us return to our general solution (15), where constants c1 and c2 that depend continuously and linearly on f ; that is,

c1 = c1(f), c2 = c2(f).

By the Riesz representation theorem, these functionals can be expressed as

c1 =

∫ 1

0
σ1(t)f(t)dt, c2 =

∫ 1

0
σ2(t)f(t)dt,

where σ1 and σ2 belong to the kernel of the operator (37) (see [15]). We choose them in the form

σ1(t) = −q1

√
λ

t
sin 2

√
λt, σ2(t) = q2

√
λ

t
cos 2

√
λt.

Consequently, we obtain

c1 = −q1

∫ 1

0

√
λ

t
sin 2

√
λtf(t)dt, c2 = q2

∫ 1

0

√
λ

t
cos 2

√
λtf(t)dt.

Substituting these integral expressions into (15), we derive the following expression for y(t):

y(t) =

∫ t

0

f(ξ)
√
λξ

sin 2
√
λ(

√
t−

√
ξ)dξ−

− q1 cos 2
√
λt

∫ 1

0

√
λ

t
sin 2

√
λtf(t)dt+ q2 sin 2

√
λt

∫ 1

0

√
λ

t
cos 2

√
λtf(t)dt.

(39)

Evaluating the integrals in (39) using integration by parts and rearranging the terms, we arrive at the corresponding boundary
value problem for equation (1):

−y(0) + q1
(
−y′(1)

√
λ sin(2

√
λ) + y(1) cos(2

√
λ)− λy(0)

)
= 0,

lim
t→0+

y′(t)
√
t

√
λ

+ q2
(
y′(1)

√
λ cos(2

√
λ) + λy(1) sin(2

√
λ)
)
= 0.

(40)

It is not difficult to observe that in the special case when the free constants q1, q2 are zero, we obtain the Cauchy problem. Writing
this boundary condition in matrix form

(
−1− aq1 aq1 cos 2

√
a 0 −

√
aq1 sin 2

√
a

0 a
√
aq2 sin 2

√
a −1 aq2 cos 2

√
a

)
y(0)

y(1)

limt→0+
√
ty′(t)

y′(1)

 = 0. (41)

The obtained results allow us to state the theorem

Theorem IV.1. The differential equation (1) has a unique solution satisfying the boundary condition (41) for all f ∈ L2(0, 1) and
every q1, q2 ∈ R.

V. CONCLUSION

In this work, we investigated the initial-boundary value problem for a degenerate hyperbolic equation with a singularity at t = 0

by introducing a modified Cauchy problem with weighted initial conditions. We proved the well-posedness of this problem in
the weighted Sobolev space W 2,2

2,t (D), derived the necessary a priori estimates for the solution, and using the theory of operator
extension, characterized the general regular boundary conditions for the corresponding one-dimensional singular ordinary differential
equation.
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