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Abstract

The focus of this study is an initial-boundary value problem associated with the degenerate hyperbolic
equation t0yu + %c’hu — Au = g in a bounded domain. Due to the singularity at ¢ = 0, standard initial
conditions lead to an ill-posed problem. To achieve solvability of the problem, we introduce a “modified”
Cauchy problem using weighted initial conditions for this degeneracy. The main result of the study is the
proof of the well-posedness of this problem within the framework of classical Sobolev spaces, as well as
the obtaining of a priori estimates of the solution. Furthermore, the general boundary conditions for the
one-dimensional equation were derived by using the restriction and extension theory.

Keywords: degenerate hyperbolic equation, weighted initial condition, well-posed problem, spectral decomposition, weighted
Sobolev space

I. INTRODUCTION

Degenerate partial differential equations are a significant and challenging area of mathematical physics [1]]. Among them,
degenerate hyperbolic equations, characterized by change of type or loss of strict hyperbolicity in certain domains or at certain
moments in time, are of particular interest [2], [3]]. Such equations are often found in mathematical models of various physical
processes, especially in fluid and gas dynamics, and they arise naturally in classical elasticity and differential geometry.

The theory of strictly hyperbolic equations provides a clear and well-developed framework for the well-posedness of the Cauchy
problem. However, the study of degenerate hyperbolic equations is associated with significant difficulties, see [4]—[7]. This complexity
arises when a hyperbolic equation degenerates when the coefficients associated with lower-order terms within the hyperbolic equation
become singular (see [8]], [9]).

In general, obtaining well-posed solutions to the Cauchy problem for degenerate cases requires either imposing conditions on
the coefficients or considering a “modified” initial condition. As noted in classical works [[10], [[11]], the standard Cauchy problem
for such equations may not be well-posed without appropriate modifications. Therefore, a natural approach is to study a weighted
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Cauchy problem, in which the initial data are specified in a weighted form. This weighted formulation is essential to compensate
for the singularity of the operator at ¢ = 0 and to ensure that the solution remains bounded. For more details, see [12], [13] and
the references therein.

In this work, we investigate a modified Cauchy problem for a degenerate hyperbolic equation considered in the cylindrical domain
D = (0,T) x Q, where Q C R™ and T' > 0. In addition, we provide a characterization of all possible regular boundary value
problems associated with the corresponding singular ordinary differential equation by applying the restriction and extension theory,
specifically relying on Otelbaev’s abstract theorem.

II. PRELIMINARIES
A. Inhomogeneous linear ODE with singular coefficient
Let us consider the following ODE
1
ly =ty (t) + Ey'(t) +Ay(t) = f(t), te€(0,T), (eY)

where A > 0 is a fixed constant and f(t) is a given function.
First, we begin with the corresponding homogeneous equation

/() + 53/ (1) + u(®) = 0. @
It is well known that a fundamental system of solutions to this equation is given by the functions
y1(t) = cos2Vt, ya(t) = sin2V/AL.
To construct the general solution of (I), we apply the method of variation of parameters. We seek a solution in the form
y(t) = C1(®ya (1) + Ca(t)y2(1), 3

where C1(t) and C2(t) are functions to be determined. By imposing the standard condition C'{ (t)y1 + C4(t)y2 = 0, we arrive at
the following linear system for the unknown derivatives C (t) and C(¢):

CL(t)y1(t) + C5(t)y2(t) = 0,

() oy = T @
C1 )y (8) + CL(1)y5(t) = e
Substituting the explicit forms expressions for y1 and y2 and their derivatives we obtain
C1(t) cos 2V At + Ch(t) sin 2V At = 0,
(%)

—Ci(t)% sin 2v/At + C’é(t)% cos 2V/ A\t = @

We determine the derivatives C1 (t) and C4(t) from the linear system (3) by using Cramer’s rule. We start by calculating the
Wronskian determinant of the fundamental system

cos 2V A\t sin 2v/ A\t
W = det Y b
—4/ ?sin2\/)\t ?COSQ\/)\t

A /A
W = ;cos2v)\t-0052v)\t7 ( tsin2v/\t> -sin 2V At

(6)
A /A
= \/; [0052 2Vt + sin? 2V )\t] =\
Next, we compute the auxiliary determinants W1 (¢) and Wa(t)
0 sin 2v/\t ‘
Wi = det @ 2 = 7& sin 2V At, (7
- / 7 cos 2V AL t
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cos 2v/ At 0 £t)
W = det X Fo) | = 7 cos2vine ®)
f\/;sin 2Vt - t

Consequently, the derivatives of the parameters are

Wy _ sin 2vV/ A\t

Cit)y= — =- t 9
Lo @ __cos 2v/ At
Ca(t) = W VN —=f(®). (10)
Integrating these expressions over the interval (0,t), we find the functions C (¢t) and Ca(t)
2
am=[ -2 \/[ F(€)dg + e, an
t 5 24/ \
Ca(t) = %f(&)df + ez, (12)

where c1 and c2 are integration constants.
Inserting the obtained functions C'1(¢) and C2(t) into the general solution yields

o(0) = —cos2Vat [ S22 fepte + sVl [ 28 pieyae

13)
+ ¢1 cos 2V At + co sin 2V \t.
To simplify the expression for the general solution (I3, we group the terms under a single integral,
)
t) = —[fcos2 At sin 24/ A€ + sin 2V At cos 2 )\]df
w(0) = [ T8 [ con2v/ATsin 2/5€ + sin2v/ R cos 21/ "
+ ¢1 cos 2V At + co sin 2V \t.
Applying the sine difference formula, the general solution admits the compact representation:
t
y(t) = / f/(l sin 2VA(VE — \/€)dE + ¢1 cos 2V AL + ca sin 2v/A (15)
0

We next introduce the Cauchy problem associated with the operator {. To determine modified initial conditions, we investigate
the behavior of the solution (I3) as ¢ — 0. First, we examine y(0)

y(0)=limy(t)=c1-1+c2-0=rcy.
t—0

Hence, the requirement y(0) = 0 forces
c1 = 0.

Let us next compute the derivative 3’ (t). Differentiating expression (I3) and simplifying yields
i) VA
't:/—cosZ\/X\/zf d¢ + co ——= cos2V At. 16
()= [ g os(2VAVE = VB )de + e2 7 cos2V/ (16)

Because the term 02% cos 2v/ At is unbounded as t — 0, the derivative y’(t) itself cannot be prescribed directly at ¢ = 0.

Instead, we analyze the limit of the weighted expression v/t %y(t):
d
li t—y(t) = A
tgré\f U =0+ caVA
For this weighted limit to remain finite, we must take co = 0. This choice provides the second initial condition

. d
Jim v/t Zu(t) =
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As a result, the conditions defining a well-posed problem for the differential operator (I) are given below
d
= li 20 =o.
y(0)=0, lim Vi Ly =0
We can now state the full Cauchy problem as

ty"(t) + 39/ (1) + My (t) = £(b),

a7
y(0) =0, lim, o+ VEy(t) = 0.
And finally, the solution to the Cauchy problem is as follows
y(t) = /t 16 gn 2VA(VE — \/€)dE. (18)
0 VAL

B. Eigenvalue problem for the Laplace operator

In this section, we provide the definition of the eigenvalue problem for the Laplace operator with homogeneous Dirichlet boundary
conditions, followed by the associated lemma and theorem:

—Ap() = Ap(@), TEQ
19)
p(z) =0, x € 0.

The eigenfunctions {¢, () }£2 ; of the self-adjoint problem (T9) form a complete orthonormal basis for L?(£2), with eigenvalues
satisfying 0 < A1 < A < -+ — o0 (see, e.g., [14]).

Lemma IL1 (Orthogonality and simplicity [[14]). The eigenfunctions {og ($)}20:1 corresponding to the eigenvalues M\, form an
orthonormal system in L2(S2), i.e.,

¢k, pm)r2() = /Q%k(ﬂﬂ)sﬁm(x) dx = Sm,
where Sy, is the Kronecker delta.

Theorem I1.2 (Spectral decomposition and completeness [14]). The system of eigenfunctions {p(z)}$2 | is complete in L2(2).

III. MAIN RESULTS

A. Formulation of the Modified Cauchy Problem in a Bounded Domain

Let Q C R™ be a bounded domain with a sufficiently smooth boundary, specifically 9 € C?. We introduce the cylindrical
domain defined by D = (0,7T) x Q. Given a source function g € L?(D), we seek a function u that satisfies

1
Lu = tuy + Jut — Au =g(t,z), (t,z)€ D. (20)
The equation is supplemented by the following initial conditions
w(0,2) =0,  lim Viu(t,z) =0, z€Q, @1
t—0
and the homogeneous Dirichlet boundary condition

u(t, z)| 0, telo,T]. (22)

z€dQ —

To solve problem 20)-22) we employ the method of spectral decomposition. Consider the complete orthonormal system
{pr(2)}52, in La(£2), consisting of eigenfunctions of the spectral problem (T9), and let {1, }$2 ; be the corresponding eigenvalues.
According to Theorem [IT.2] both the solution and the source function can be expanded into Fourier series

u(t,) = > en@u(),  9lte) =3 er(@gn(t), @3)
k=1

k=1
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where the expansion coefficients are given by
yr(t) = /{; pr(z)u(t, z) dz, gk (t) = /Q pr(z)g(t, z) dz. (24)
From the initial conditions (ZI), it follows that for the coefficients yy (¢) satisfy
ue(0) =0, lim Vi (t) = 0.

Substitution of the series representation (23) into equation (20) reduces the partial differential equation to a one-dimensional
singular Cauchy problem for the coefficient yy,

1
leye = by (8) + Syk(8) + Ay (t) = fu(D), (25)
u(0) =0,  lim vyl (t) = 0. 26)
t—0
As established in the previous sections, the homogeneous equation [y, = O possesses solutions spanned by trigonometric
functions giving the general homogeneous solution as
yk,h(t) = C1 cos(2y/ At) + Casin(2+/ Agt). 27

Employing the variation of parameters method and applying the initial conditions (26) provides the unique solution to the singular

Cauchy problem @23)-(26):

t
n(®) = [ L& sin [o A - VB e 28)

Finally, substituting expression (28) back into (23)) leads to the following representation of the solution to @20)-22):

0 t
witn) = 3 n(@) ([ L s [ovmivi- v ac) 29)

B. Sobolev Regularity for the Singular ODE
We introduce the weighted Sobolev space W227t(07 T)={y:y € L?(0,T) and ty"” € W1(0,T)} with the norm

2

d
9wz 0 = e +lyllz o) G0

L2(0,T)

[z
-y
L2(0,T) dt

Lemma IIL1. Let f, € L?(0,T). Then the solution y;, € I/V227t(07 T) of the one-dimensional singular equation @3)—R6) satisfies
the estimate

”yk”Wz'{t(o,T) < c||fk||L2(0,T)7
where c is a constant.
Proof. Let v = v/t and define w(v) = y(v?). Then y(t) = w(\/t), and computing derivatives yields
w' (v) + Aw(v) = 4f(v?).

The solution 28) has the form
) = = [ sin (230 - 9)g(s)d
w(y) = — sin v —38))g(s)ds,
VX Jo

with derivative

w'(v) = 4/01) cos (2\5(1} — 5))g(s)ds.

Define g(v) = f(v2). Since f € L2(0,T), we have

VT
[ vlaPdy < .
0
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We show yj, € W} (0, T) by proving

T T
/ lyx (£)]2dt < oo and / |y, (£)]2dt < oo.
0 0

Using the substitution ¢t = v2, these become

VT VT | (v)]2
/ vjw(v)|?dv < oo and / Mdv < o0.
0

0 v

From the solution representation, we have the bounds
2 v , v
@l < = [lglds, W@ <1 [ gl
VA Jo 0
Using the bound on w, Cauchy—Schwarz, and Fubini’s theorem, we obtain
VT 16 vT
/ vjw(v)|?dv < —T5/4/ slg(s)|?ds < oc.
0 Sk 0
Similarly, with the bound for w’, we obtain

VT ! ()2 vT
/ Mdv < 64T1/4/ slg(s)|?ds < oc.
0 0

v

Using the transformation ¢ = v2, we obtain the following L? bounds
4 /8
lukllLz(o,r)y < \/TTkT I fkllz2 0,1y (€1)
and
”y;cHLQ(O,T) < 4T1/8||kaL2(O,T)' (32)

Which concludes T T
/ lyx (t))%dt < oo and / |y}, (£)]%dt < oo.
0 0

Equation @ can be rearranged to express the second derivative term:

() = Fu0) = k() — Meun (o),

From this, it can be concluded that

1"

1
([tui HL2(0,T) SkaHIﬁ(o,T) + ||§y;€||L2(O,T) + H)‘kkaH(o,T)
<ell il m o)

C. Solution estimates for general case
We define the (—Az)% acting on a function g € L?(D) by the following rule

(2229 =3 gV ren(a), (34)
k=1

. 1 x>
with the norm ||[(—Az)2g|12,, -, = 3 Melgw(t)]?
L¥(D) ~ &
Let W;f(D) be the weighted Sobolev space with the norm

02%u

lully2.2 = |t + 1 Aull 2 (py + llullp2(p)- (35)
2.t ot

L2(D)

|5
L2(D) ot
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Theorem IIL2. Assume that g€ L?(D) and that the condition
oo
S Am|gm (§)|2 < 00 holds. Then there exists a unique solution u € W227’t2(D) of the problem R0)- 22) that satisfies the

|m|=1

following inequality

1
+lAzullp2py +lull 2 (py < cllgllp2(p) + <o H“A“)Z’g‘ L2(D)’

H o2 L2(D) H

L2(D)
with constants ¢ and co depending only on T.

Proof. By Parseval’s identity, we have

T 1
ooy = > Pt < es [ 3 ((lanor?) a
k=1 0 =1 \"k

oo oo
By @D and 3% 3Lk ()1 < 5 52 lgw(D), we obain

||u||L2(D) <ca Z Hgk”L2(0 T) — Cng”%ﬁ(D)-

|

Similar considerations apply to Agzu, from @, we have

Similarly, by (32) we get
Ou||?

ot

< eallgl2a .
D

1
lAcull 2oy = Zukyk DI < el (=822 g125 -

Finally, rewriting equation (20) as
t82u (t,2) 1 0u N
— =gt,z)— = — u.
oz ~ Y 2 0t

Now it is easily seen that

=

82
’ (36)

t—u
ot?

< cllgliz2(py + o || (~2a) |

L2(D) L2(D)’

This proves the theorem.

IV. REGULAR BOUNDARY VALUE PROBLEM FOR THE SECOND-ORDER EQUATION
The aim of this section is to obtain general boundary conditions for equation (I) in the one-dimensional case. Our approach
relies on extension and restriction theory for differential operators, and in particular on the abstract theorem of Otelbaev [T3].
Defining the correct boundary conditions requires deriving the conjugate problem for the operator { (). The calculation of the

scalar product yields

1 3
{ty" + 5y + Ay, w) = (g, tw” + Su’ 4 Aw).

Thus, the conjugate operator is 3
Fw=tw" + 5 w' + lw.

Consequently, the Cauchy problem admits the following conjugate formulation

tw' (1) + Jw'(t) + dw(t) = o(t),
(37
w(l) =0, w'(1) =0.
The homogeneous problem 3
tw’ (t) + 5w’(t) + dw(t) =0,
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has a general solution of the following form

wt) =-q1 \/gsin 2Vt + ga1/ % cos 2V/At. (38)

where g1, g2 are arbitrary constants.
Now let us return to our general solution @, where constants ¢; and c2 that depend continuously and linearly on f; that is,

c1 = c1(f), 2 = e2(f).
By the Riesz representation theorem, these functionals can be expressed as
1 1
o = / oL (O f(t)dt, e = / o2 (t) (1),
0 0

where o1 and o2 belong to the kernel of the operator @) (see [[15]). We choose them in the form

o1(t) = —qu/% sin 2\/%, o2(t) = qz\/§ cos 2Vt

1 1
c1 = —q1/0 \/?Sin%/ﬁf(t)dt, co = q2/0 @cosme(t)dt.

Substituting these integral expressions into (I3), we derive the following expression for y(t):

_ [T fE)
y(t) = /0 e sin 2VA(VE — \/€)de—

/X /X
-q1 cos2v>\t/ 1/;sin2v)\tf(t)dt+q2 sin2v>\t/ 1/ ;cosQ\/Atf(t)dt.
0 0

Evaluating the integrals in (39) using integration by parts and rearranging the terms, we arrive at the corresponding boundary
value problem for equation (I):

—y(0) + a1 (—y ()VAsin(2VR) + y(1) cos(2VA) — Ay(0)) =0,

Consequently, we obtain

(39

40
LYV o
m

t—0+ \&
It is not difficult to observe that in the special case when the free constants g1, g2 are zero, we obtain the Cauchy problem. Writing
this boundary condition in matrix form

+ a2 (v (1)VXcos(2vA) + Ay(1) sin(2V3) ) = 0.

y(0)
—1—aq aqi cos 2v/a 0 —Vaqsin2y/a y(1) -0 @
0 av/aqe sin2y/a —1 aqz cos 2 /a lim, _, o+ Viy'e) |

y'(1)
The obtained results allow us to state the theorem

Theorem IV.1. The differential equation (I) has a unique solution satisfying the boundary condition @) for all f € L%(0,1) and
every q1,q2 € R.

V. CONCLUSION

In this work, we investigated the initial-boundary value problem for a degenerate hyperbolic equation with a singularity at ¢ = 0
by introducing a modified Cauchy problem with weighted initial conditions. We proved the well-posedness of this problem in
the weighted Sobolev space W22”t2 (D), derived the necessary a priori estimates for the solution, and using the theory of operator
extension, characterized the general regular boundary conditions for the corresponding one-dimensional singular ordinary differential
equation.
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