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Abstract

Lung disorders are a major global health issue. A quick and accurate diagnosis is essential for proper
treatment. In order to increase diagnostic accuracy, recent multimodal techniques are gaining popularity.
This study carried out a comprehensive analysis of research articles on multimodal approaches that were
published between 2020 and 2024 in Scopus and Google Scholar. The results show that there is limited
study on the multimodal approach and on a variety of lung disorders such as asthma, TB, pneumonia, and
chronic obstructive pulmonary disease. Several studies concentrated mainly on the detection and binary
classification of COVID-19. The field has several challenges, including limited datasets, high computing
costs, difficulties in integrating multiple modalities, and lack of accessibility of the models. Future studies
should look at a wider range of lung diseases, increase the accessibility of datasets, improve fusion methods
for merging data from many sources, and create models that are easier to understand and use fewer
resources. Resolving these issues will improve patient outcomes by advancing the real-world use of deep
learning in medical diagnosis.

Keywords: deep learning, multimodal approach, lung diseases, medical imaging, lung sounds, regression, classification, diag-
nostics.

I. INTRODUCTION

The respiratory system plays a crucial role in the human body, facilitating the exchange of oxygen and carbon dioxide [1].
Despite its flexibility, it remains at risk for numerous diseases that can significantly affect lung function and overall human health.
Lung diseases cover a broad category of disorders such as pneumonia, tuberculosis, chronic obstructive pulmonary disease, and lung
cancer, among others. These diseases are a major cause of morbidity and mortality on a global scale [2].

The World Health Organization informs that in 2019 around 3.23 million victims were COPD. In the same year, it was reported
that chronic respiratory diseases were responsible for 4 million deaths overall. In the United States, asthma affects more than 23.3
million adults and 6.6% children, resulting in significant treatment costs and reduced quality of life [3]–[5]. Furthermore, in 2024
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Kazakhstan had one of the highest rates of lung disorders globally [6]. These statistics highlight the impact of lung diseases on
global health and the need for better diagnostic methods that can quickly and accurately identify diseases.

Traditional methods for diagnosing lung disease are medical history reviews, blood tests, lung sound, chest X-rays, and CT scans,
etc. [7]. However, these methods have their own drawbacks, such as the dependence on expert analysis and limited accessibility
in the environment. Sometimes, these methods can be the cause of human error. That is why manual checking and image-based
analysis emphasize the need for more automated and standardized diagnostic processes [8], [9].

Nowadays deep learning has become a solution for these issues, providing precise and automatic diagnostic skills. Due to the
increasing availability of medical imaging and acoustic data, researchers have created deep learning algorithms that can accurately
identify lung problems [10]. In order to identify diseases, these models have shown remarkable success in evaluating lung sound
recordings, CT scans, and chest X-rays. Notable developments include the application of Recurrent Neural Network for lung sound
analysis and Convolutional Neural Network for image based classification. For instance, Çallı et al. emphasized the efficacy of deep
learning models like VGGNet and ResNet in chest X-ray processing, Ahmed et al. investigated CNN based architectures for lung
disease identification using chest imaging [11], [12]. Likewise, Sfayyih et al. examined the function of acoustic signal analysis in
identifying lung diseases, stressing the significance of CNN models based on spectrograms [13].

Kieu et al. examined 98 research from 2016 to 2020. They presented a taxonomy that included ensemble techniques, algorithms,
transfer learning, augmentation, and features. Large image sizes, a lack of publicly available datasets, data imbalance, and significant
error correlation in ensemble models are some of the main issues noted. In order to overcome these problems, the authors proposed
using cloud computing, different feature extraction, dataset sharing, and enhanced ensemble approaches. This survey article offers
insightful information, more research is necessary given recent developments in datasets and model designs [14]. AI based lung
sound categorization for the diagnosis of respiratory diseases was reviewed by Wanasinghe et al., who highlighted developments in
deep learning models, data augmentation, feature extraction, and explainability. With fusion models reaching up to 98% accuracy,
CNN performed incredibly. However, several obstacles persist, such as the scarcity of datasets, the dependence on individual feature
representations, and the absence of explainable AI methodologies. Developing clinical support tools for real-world applications,
increasing model interpretability, and diversifying datasets should be the main goals of future research [9]. In their assessment of
deep learning-based acoustic analysis for lung disease diagnosis, Sfayyih et al. emphasized the expanding use of Deep Learning
Convolutional Neural Networks (DLCNNs) in the detection of obstructive lung diseases. There are no as many reviews on signal-
based lung disease detection as there once was. Although they show potential, DLCNNs need to be further validated through
extensive research. Data standardization, clinical acceptance, and enhancing diagnostic reliability should be the main areas of future
study to assist industry applications and medical practitioners [13].

Despite these developments, most of the other research has focused on single-modal strategies that leverage acoustic analysis,
medical imaging, or other discrete data sources. Deep learning techniques for lung illness diagnosis have been evaluated in a variety
of survey publications, these researchers mainly focus on single-method approaches such as respiratory sound categorization or
CNN-based medical imaging analysis or other types of data [15]. On the other hand, diagnosing lung disease usually requires a
variety of clinical data sources, such as the patient’s medical history, symptoms, and other relevant information. The multimodal
approach can improve diagnostic accuracy, reduce biases, and increase predictability by integrating multiple data sources [15]. And
this survey aims to close this gap by providing an overview of multimodal deep learning methods for diagnosing lung diseases. The
objectives include assessing the effectiveness of multimodal models, identifying challenges that retard the progression in this field,
and exploring solutions that can be implemented to improve model accessibility and performance in a variety of lung diseases.

The following sections present a detailed review of multimodal deep learning techniques. The second section describes the
strategy used to collect and examine the relevant literature, including research published in Russian, Kazakh, and English. The third
section outlines the fundamental steps needed for deep learning applications, including feature extraction, data preprocessing, model
training, and evaluation. The fourth section classifies current techniques and examines breakthroughs in this area. In conclusion, the
importance of deep learning in improving the diagnosis of lung diseases and the potential impact of multimodal approaches will be
addressed.

II. METHODOLOGY

This research uses a systematic process to identify and analyze recent work on the multimodal approach. The methodology
is divided into major steps that include the process of selecting the articles, the filtering process, and the analysis of the selected
articles. The research was carried out in the Scopus and Google Scholar databases, with an emphasis on Q1-ranked papers published
between 2020 and 2024. The research terms used were a combination of phrases such as ”deep learning”, ”detection”, ”lung disease”
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(including asthma, chronic obstructive pulmonary disease, COPD, lung cancer, tuberculosis, pneumonia, COVID-19) and with terms
like ”image”, ”audio”, and ”sound” to ensure that suitable research is obtained.

The selection process is summarized in Figure 1b. The initial search yielded 535 papers from Scopus and 550 from Google
Scholar. A filtering process was then applied to exclude duplicate records and retain only studies that explicitly utilized both image
and audio or sound data in a multimodal approach. This step reduced the selection to 47 studies. Further eligibility screening was
performed on the basis of predefined inclusion and exclusion criteria. The inclusion criteria required studies to focus on multimodal
deep learning models for lung disease detection, provide clear experimental results and evaluation metrics, be published in English,
Russian, or Kazakh and appear in peer-reviewed journals or conferences. Studies were excluded if they used only a single data
modality (either image or audio), covered diseases beyond the scope of this research, or lacked clear methodological details or
experimental validation.

Following this process, 22 articles were considered eligible for inclusion in the final survey. These selected studies provided
meaningful information on current trends and challenges of multimodal deep learning in lung disease detection. And the results of
recent studies are summarized in Table I to provide a better understanding of the different modalities and their uses in the diagnosis
of lung diseases.

Table I summarizes the various research studies that were analyzed in this survey, emphasizing the variety of modalities, datasets,
and neural network architectures that were used. This indicates the diversity of approaches currently being explored in the field of
lung disease diagnosis using multimodal deep learning techniques.

This methodology section included the selection of relevant studies, a filtering process was used to ensure that only multimodal
approaches were included, and the final set of studies was assessed using predefined criteria. The selected articles provide information
on current trends, challenges and advances in the integration of multiple data modalities for improved diagnostic accuracy.

III. FUNDAMENTAL STEPS IN APPLYING DEEP LEARNING FOR LUNG DISEASE DETECTION

Deep learning plays an essential role in the identification of lung diseases by analyzing medical images and patient data. The
process consists of four key steps, they are data collection, data preprocessing, training model, and prediction making [14]. The
overview of the process is illustrated at Figure 1b.

(a) (b)

Fig. 1: (a) The survey methodology, (b) Overview of using DL for lung disease detection
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TABLE I: Summary of multimodal deep learning approaches for lung disease diagnosis

Study Modality Datasets Used Neural Network Architecture Key Results
Kumar et al.,
2023 [18]

img + text Manually collected (289
patients, future 65k
records)

DenseNet121, ResNet50,
LSTM, SVM fusion

Intermediate fusion
improved accuracy by
2.9%

Malik et al.,
2024 [19]

img + audio 24 public datasets (CXR,
Cough sound, RSNA, etc.)

CNN + BANL, RBAP, MWDG Achieved SOTA
performance across diseases

Kumar et al.,
2024 [20]

img + text 3,256 patient records (In-
dia)

CNN, Denoising Autoencoder,
Cross-Modal Transformer

Addressed data imbalance,
high accuracy for TB classi-
fication

Abhishek
et al., 2024
[21]

img + audio 1,979 respiratory sound
recordings

Hybrid CNN-GRU model High accuracy in common
respiratory diseases, overfit-
ting risk

Sangeetha
et al., 2024
[22]

img + text TCIA, TCGA MFDNN, CNN, DNN, Interme-
diate Fusion

92.5% accuracy in lung can-
cer classification

Varunkumar
et al., 2024
[23]

img + img RIDER Lung CT, Kaggle
X-ray

CNN with dilated convolutions,
multimodal fusion

Limited dataset diversity,
generalizability issues

Hamdi et al.,
2021 [24]

img + text Public IPF dataset (33,026
CT + 1,549 records)

EfficientNet, DenseNet, LSTM,
Attention Fusion

Multimodal integration im-
proved prediction accuracy

Kumar et al.,
2024 [25]

img + audio +
text

AIIMS, Raipur (CT, X-
ray, cough, lung sounds)

EfficientNet, RNN, U-Net,
OpenL3, RVFL neuro-fuzzy
model

COPD prediction using mul-
timodal fusion

Deng et al.,
2024 [35]

img + text East China hospitals, Kag-
gle COVID-19 CT

CNN + Contrastive Learning +
Early Fusion

Contrastive learning
improved performance,
Grad-CAM interpretation

Adeshina
et al., 2022
[26]

img + audio COVIDx, SARS-CoV-2
CT-scan dataset

CNN, ResNet, DenseNet,
XResNet, Self-Attention

91.07% accuracy, effective
multimodal cascaded
approach

Thandu et
al., 2024
[27]

img + audio Chest X-ray (COVID-
19 Radiography) +
COUGHVID

DSPANN + Blockchain-based
Privacy (ECHFA)

Data quality challenges,
complex attention
mechanisms

Liu et al.,
2024 [28]

img + text 4 hospitals (China), Chest
CT, Clinical Features

DenseNet-201 + DNNs + Early
Fusion

Outperformed junior radiolo-
gists, 11 key clinical features
identified

Farhan et al.,
2023 [29]

img + img CXRTD, PCXRA, CCSC,
NIH Chest X-ray

CNN, LSTM, SVM, Decision
Tree

Improved severity grading
performance

Lay et al.,
2022 [30]

img + text Shenzhen, Montgomery
X-ray Dataset

EfficientNet, XGBoost, U-Net AUC improved by 0.0213
over unimodal models

Mayya et al.,
2021 [36]

img + text COVID-19 Chest X-ray,
RSNA Pneumonia Dataset

ResNet18, NLP, Grad-CAM,
Deep NN Ensemble

X-ray + diagnosis reports en-
hanced accuracy

Wu et al.,
2021 [31]

img + text TCIA (422 NSCLC pa-
tients)

3D-ResNet, Clinical Embed-
ding Layer, Fusion

Improved survival prediction
using multimodal fusion
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A. Dataset Collection and Data Preprocessing
When collecting data, data can be in the form of chest X-rays, CT scans, medical records of patients, coughing, and breathing

sounds [10], [11]. Researchers choose between public medical databases or manually acquire data from hospitals and clinics. To
ensure that the model can identify a wide variety of lung disorders, balanced data are crucial. Once data is collected, they are
processed to make them clean and ready for use. This includes eliminating noise, improving image quality, and being standardized
in terms of size and format. In medical imaging, pre-processing can be in altering contrast, segmentation of lung regions, and removal
of extraneous detail. In non-image data, such as patient symptoms or audio, pre-processing can be used to structure information in
a well-defined format. The purpose of this step is to clean the data so that the model learns only meaningful patterns [33].

B. Training the Model and Prediction
Before the training step, the model gets a large number of labeled samples to be able to understand its features and patterns of

lung diseases. Researchers can use neural network architectures that are appropriate for medical image and sound analysis. During
training time, the model continuously changes its internal parameters so that it can better identify diseases. A well-trained model
predicts the results of the new data. After being trained, the model is tested with new images or patient data to verify its performance.
When given a new X-ray or CT scan, the model makes a decision about whether a patient is healthy or has a specific lung disease
[14]. Certain models also give us a probability score that informs us about how certain or confident the model is in its decision.
This method can help physicians diagnose patients more quickly and accurately when it is integrated into a clinical workflow.

IV. TAXONOMY AND TRENDS IN MULTIMODAL APPROACHES FOR LUNG DISEASE DIAGNOSIS

This section shows the taxonomy and trends in multimodal approaches to the diagnosis of lung diseases. Modalities, feature
engineering, data augmentation, fusion techniques, illness categories, and output types are the six key qualities into which the
taxonomy groups the important methodologies used in recent studies. These attributes describe the methods of data acquisition,
feature extraction, model enhancement, and prediction. These attributes are discussed in detail in subsections A to B, along with a
study of the corresponding research.

A. Modalities type
Lung disease detection using deep learning is based on various data modalities, often combining multiple sources for better

accuracy. Figure 2a shows that some studies use only medical images, such as CT, X-rays, and PET scans, to identify lung
abnormalities [29], [33]. Others improve detection by integrating images with respiratory or cough sounds, capturing both structural
and acoustic patterns [15], [19], [21], [26], [27], [33], [37], [38]. Another approach combines images with clinical records, including
patient demographics, diagnostic reports, and lab results, providing additional diagnostic context [18], [20], [22], [24], [28], [30],
[31], [35], [36]. Studies using image and audio data focus primarily on COVID-19, pneumonia, tuberculosis, lung cancer, asthma,
and COPD, while image and text combinations are commonly applied to lung cancer, tuberculosis, chronic bronchitis, and pulmonary
fibrosis. Some research incorporates the three modalities: images, audio, and text, to improve disease prediction, particularly for
COVID-19, COPD, and other complex respiratory conditions [17], [25], [32]. The choice of modality depends on the characteristics
of the disease and the available diagnostic data, with multimodal approaches enhancing the accuracy of classification.

B. Feature engineering
Feature engineering is essential for the diagnosis of multimodal lung disease because it has a direct impact on the way deep

learning models extract relevant representations from medical data. Handcrafted features and learned features are two main categories
into which feature engineering methodologies can be divided. Medical pictures and audio data are manually processed to extract
hand-crafted features based on domain-specific knowledge. Texture descriptors, shape characteristics, and statistical qualities are
frequently used in imaging modalities, whereas Mel frequency cepstral coefficients (MFCC) and spectrum features are frequently
used in audio-based diagnostics. On the other hand, deep learning models, in particular, Convolutional Neural Networks, which
are suited to recognizing complex patterns in unstructured information without the need for explicit feature selection automatically
extract learned features. Using pre-trained architectures like VGG19, Inception-v3, ResNet, DenseNet, and EfficientNet to increase
feature extraction and classification performance, transfer learning has been widely used in recent research. These models are refined
on lung disease datasets to extract high-level features relevant to illness detection after being pre-trained on vast datasets. In order
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(a) (b)

Fig. 2: (a) Distribution of Modalities, (b) Fusion techniques over time

to minimize dimensionality and maintain the most discriminative features, some research incorporates feature selection methods
such as principal component analysis (PCA) and recursive feature elimination (RFE) in addition to feature extraction based on
deep learning [18], [22]. This improves the performance of the model. Furthermore, hybrid techniques that integrate learned and
handcrafted features have attracted a lot of interest since they allow for a more thorough representation of multimodal data, which
eventually improves diagnostic adaptability and accuracy. Multimodal approaches can improve lung disease detection by using these
feature engineering techniques to capture high- and low-level data representations, which will improve prediction performance.

C. Data augmentation
Deep learning-based lung disease identification often employs data augmentation to improve model generalization and address

data limitation. Rotation, scaling, translation, flipping, contrast alterations, and noise injection are popular augmentation procedures in
medical imaging. For specialization on lung regions, some investigations use segmentation-based augmentations such as cropping and
scaling. Furthermore, image quality is enhanced by preprocessing techniques such contrast limited adaptive histogram equalization
(CLAHE) and histogram matching [36]. Using pitch shifting, temporal stretching, noise injection, and speed perturbation, aug-
mentation techniques alter respiratory sounds for audio-based classification [33]. These techniques help models adjust to changes
in recording conditions and sound quality. Furthermore, by increasing the representation of imbalanced classes, data balancing
techniques such as MWDG (Multiple-Way Data Generation) and SMOTE (Synthetic Minority Oversampling Technique) reduce
model bias [19]. Horizontal flipping, rotation, and width/height shifts are used in public datasets such as POCOVID-Net and NIH
Chest X-Ray, in addition to preprocessing techniques such as CLAHE and scaling. Principal component analysis (PCA), image
embedding, clustering for defect detection, and Fourier transform are the complex augmentation methods. They are frequently used
in manually collected datasets. Preprocessing techniques such as wavelet transformations, noise reduction, and Mel frequency cepstral
coefficients (MFCC) improve the accuracy in audio samples [37]. Augmentation has drawbacks despite its benefits. Unrealistic data
produced by excessive changes can result in poor model generalization [37]. Complex procedures raise computing costs, and improper
augmentation strategies could result in biases. Additionally, broad, high-quality real-world data is still necessary for developing a
strong and reliable deep learning model, and augmentation cannot completely replace it.

D. Fusion techniques
In order to improve the quality and strength of computational models, fusion techniques are essential for combining various

data sources. Figure 2b shows that several fusion strategies have been used, such as early fusion (E), intermediate fusion (I),
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and late fusion (L), according to the reviewed publications. The method by which and when the data is joined during processing
differ in these methods, which affects model performance and computing efficiency. With 10 experiments, intermediate fusion
was the most commonly utilized strategy among the 22 papers surveyed [17], [20]–[24], [27], [29], [33]. Before making a final
judgment, features that have been retrieved from several modalities or sources are combined using feature-level integration, which
is a common component of intermediate fusion approaches. The Progressive Split Deformable Field Fusion Module (PSDFM),
which uses intermediate fusion to improve representation learning, is a notable example [27]. Seven studies used early fusion (E),
suggesting a preference for input-level direct data integration [15], [19], [28], [31], [32], [35], [36]. This method is frequently used
in situations where it is possible to efficiently mix raw data from many sources prior to feature extraction. Four articles reported
the use of late fusion (L), which combines predictions from different models and is frequently used in ensemble-based techniques
to increase the accuracy of regression or classification [25], [30], [37]. The flexibility of fusion techniques in complicated problem
domains was demonstrated by certain papers that used a combination of fusion procedures, such as L, I and E, I [18], [26].

However, a study specifically mentioned the lack of fusion techniques, implying that independent processing of data sources would
be better in some circumstances. The performance of the model is significantly affected by the fusion technique method. Intermediate
fusion often outperforms early and late fusion because it allows feature representations from multiple modalities to be refined before
final decision making, leading to more discriminative patterns. However, it can be challenging to compute [26]. On the other hand,
early fusion ensures that raw data is combined before feature extraction, which can be valuable when different modalities share
a common feature space but may struggle with heterogeneous data [18]. Late fusion provides flexibility by allowing independent
model predictions to be combined, but may not fully leverage interactions between different data sources. The effectiveness of
each method depends on factors such as data heterogeneity, model complexity, and available computational resources. Studies have
shown that hybrid approaches, such as the combination of early and intermediate fusion, can further improve performance utilizing
data-level and feature-level integration [26].

In general, fusion methods are still being developed, and hybrid fusion models which use several levels of integration to optimize
the advantages of various data sources are becoming progressively more popular. Future studies might concentrate on refining fusion
techniques to strike a balance between prediction performance and computational economy across a range of application domains.

E. Disease types
The reviewed studies cover a broad spectrum of lung diseases, demonstrating the extensive application of computational models

in clinical diagnosis. As shown in Figure 3b, COVID-19 was the most frequently occurring disease to be examined, occurring in nine
studies, reaffirming its persistent relevance in clinical imaging [15], [17], [26], [27], [32], [36], [38]. Pneumonia was also a significant
area of research, studies of its various forms, including bacterial, viral, lobar, lobular, and Staphylococcus aureus pneumonia (SAP)
demonstrating the need for precise diagnostic models [15], [17]–[19]. Tuberculosis (TB) has also been explored frequently, with
particular studies differentiating pulmonary TB [15], [19], [20], [37]. Other respiratory infections including bronchitis, lower and
upper respiratory tract infections (LRTI, URTI), and bronchiolitis were also explored [37]. Chronic lung diseases sush as Chronic
Obstructive Pulmonary Disease (COPD), asthma, and chronic bronchitis were also extensively explored, with the need for early
diagnosis and long-term monitoring [25]. Lung cancer, particularly non-small cell lung cancer (NSCLC), was also a significant area
of research in various studies [15], [19], [22]. Some studies also explored relatively uncommon but clinically important conditions
including Idiopathic Pulmonary Fibrosis (IPF), pleural effusion, and pulmonary edema [24].

The studies used publicly available datasets or manually collected data. Most of the research used publicly available datasets,
ensuring standardized imaging data for training and evaluation. However, some studies included manually collected datasets from
hospitals and medical institutions, especially for diseases that are underrepresented in publicly available data [17], [18], [20], [21],
[32], [35]–[37]. According to Table 1, ChestX-ray14, COVIDx, Tuberculosis Chest X-ray, RSNA Pneumonia Detection Challenge
Dataset, and LIDC-IDRI are the public datasets most commonly used. Large-scale model training was made possible by these datasets,
which offered categorized medical imaging data, eliminating the need for manual collection. A smaller number of studies applied
datasets that were manually collected, mostly from imaging facilities and hospital records. For rare disorders where public datasets
were not enough, such as pleural effusion, pulmonary fibrosis, or mixed-disease classification tasks, these datasets were especially
valuable. In comparison to publicly available datasets, personally gathered datasets frequently have smaller sample numbers, but
provide greater control over patient demographics and imaging conditions.

Large-scale model training is made easier by publicly accessible datasets, but these datasets frequently contain biases that may
hinder the generalizability and performance of the models. Ethnic representation is an important issue. There is a lack of diversity
in many large scale datasets, like ChestX-ray14 and COVIDx, because most of the images are taken from particular populations
[36]. Because of this, models developed using these datasets might not work consistently across ethnic groups, which could reduce
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the diagnostic accuracy for underrepresented groups. The distribution of ages is also a significant factor. Adult and elderly patients
make up a larger percentage of many datasets, while young children are still underrepresented. For diseases like pneumonia and
bronchiolitis, which occur differently in children than in adults, this can present difficulties. Models may perform less well in
predicting outcomes for younger patients if they are not trained in a balanced age distribution. In addition, a common limitation is
an imbalance in the severity of the disease. Since severe cases are more commonly diagnosed and documented in medical settings,
they often make up a larger percentage of public datasets. This makes early stage diagnosis more challenging by biasing model
training toward identifying diseases at a later stage. Early detection, which is essential for prompt medical intervention, may be
difficult for models trained on unbalanced datasets.

The range of diseases covered in these studies highlights the need for strong deep learning models capable of addressing a
variety of lung conditions. To improve predictability, future research may focus on improving classification performance in a range
of diseases and ensuring that datasets incorporate world differences. Curating datasets that more accurately reflect a range of age
groups, disease severity levels, and populations should be the main goal.

(a) (b)

Fig. 3: (a) Distribution of output types in lung disease diagnosis studies, (b) Distribution of most studied
lung diseases in multimodal research

F. Output types
Various types of output were used in the investigated research. Figure 3a shows that the three main types of these outputs were

probabilistic estimation, regression based prediction, and classification. Classification tasks, especially binary classification, were a
popular type among reviewed articles [18], [20], [22], [23], [25], [26], [28], [30], [32], [35], [36], [38]. A unique case was when
a model was categorized according to severity levels rather than type of disease, including mild, moderate, severe, and deadly
[29]. Also in regression models used to estimate patient disease severity. Using metrics like the MAE and Concordance Index to
estimate survival time for patients with non-small cell lung cancer. Regression based methods were also employed to monitor the
severity of COPD and the development of idiopathic pulmonary fibrosis. Probabilistic outputs, which provide confidence scores for
the existence or severity levels of the diseases. In multiclass classification tasks, where probability distributions aided in improving
decision making in unclear situations, such methods were frequently used. These probabilistic outputs were frequently evaluated
using metrics like the Receiver Operating Characteristic (ROC) curve and the Area Under the Curve (AUC). The metrics used for
the evaluation were chosen based on the selection of the output type. F1-score, recall, specificity, accuracy, and precision were
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frequently used in binary classification models. Log Loss, Fowlkes-Mallows Index (FMI), and Matthews Correlation Coefficient
(MCC) were used in multiclass classification studies. Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), and R2 score were commonly used to evaluate regression models. It is crucial to use these metrics depending on
their strengths and limitations [14]. AUC-ROC and other performance metrics based on probability were commonly used to assess
probabilistic models. However, it does not capture data imbalances as well as the F1 score, MCC [34]. Both RMSE and MAE give
distinct viewpoints on prediction error in regression models, with RMSE penalizing larger errors progressively. The best evaluation
method for a task can be chosen with the help of a structured comparison of these metrics. The comparative analysis presented in
Table II underscores the importance of understanding the strengths and limitations inherent in different models, highlighting areas
that require further exploration.

TABLE II: Comparison of multimodal models: strengths, weaknesses, and metrics

Study Strengths Weaknesses Evaluation Metrics
Kumar et al.,
2023 [18]

Adaptive batch sizes, effective multi-
modal fusion

Small dataset, data quality issues Accuracy, Precision,
F1 Score

Malik et al.,
2024 [19]

Early fusion, data augmentation Data imbalance, high computational
cost

Accuracy (99.01%),
MCC, FMI

Kumar et al.,
2024 [20]

Cross-modal attention, effective fusion Small dataset, high computational cost Accuracy (95%),
AUC-ROC, MCC

Abhishek et
al., 2024 [21]

Robust feature extraction, real-time
processing

Limited class diversity, noisy data Accuracy (98%),
AUC, F1 Score

Sangeetha et
al., 2024 [22]

Improved accuracy, effective feature ex-
traction

Privacy concerns, AI interpretability Accuracy (92.5%),
Precision, Recall

Varunkumar et
al., 2024 [23]

CNN for feature extraction, hierarchical
fusion

Lack of diverse datasets, model inter-
pretability

Accuracy (94%), F1
Score

Hamdi et al.,
2021 [24]

CNN+LSTM fusion, attention mecha-
nism

Lung segmentation noise, training com-
plexity

Accuracy (97%), R²
Score (91%)

Deng et al.,
2024 [35]

Hierarchical fine-tuning, contrastive
learning

Small dataset, overfitting risk Accuracy (90.14%),
F1 Score

Adeshina et
al., 2022 [26]

End-to-end training, self-attention. Dis-
criminative fine-tuning.

Complexity in training models. Sensi-
tivity to hyperparameter tuning.

Accuracy (91.26%),
XResNet

Thandu et al.,
2024 [27]

Uses multimodal data fusion, achieves
high diagnostic accuracy, blockchain
for privacy

Scalability, interpretability Accuracy (98%),
AUC (97%)

Liu et al., 2024
[28]

Early fusion, transfer learning Small sample size, imbalance AUC (0.92), Accu-
racy (78%)

Farhan et al.,
2023 [29]

CNN+handcrafted features, optimized
CNN

Class imbalance, long training times Accuracy (98.78%),
F1 Score

Lay et al.,
2022 [30]

Demographic data fusion, late fusion Small dataset, generalization issues AUC (0.9574)

Mayya et al.,
2021 [36]

Feedback mechanism, Grad-CAM in-
terpretability

Limited dataset, X-ray variability Accuracy (97%)

Wu et al., 2021
[31]

3D-ResNet, batch normalization Data variety issues, complex survival
model

MAE (0.162), C-
index (0.6580)

The reviewed studies highlight a growing trend toward the integration of multiple modalities, advanced feature engineering,
and data fusion techniques to improve diagnostic accuracy. The taxonomy reveals that the majority of approaches rely on deep
learning, leveraging handcrafted and learned features to optimize performance. Intermediate fusion emerges as the most effective
method, striking a balance between enhanced representation learning and computational efficiency. Additionally, publicly available
datasets remain the primary source for training models, despite concerns about data diversity. Upcoming advancements should focus
on improving fusion techniques, guaranteeing dataset inclusivity, and resolving feature selection issues to increase the diagnostic
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accuracy for a wider variety of lung conditions.

V. CONCLUSION

This study investigated the application of deep learning to identify lung diseases by merging various data sets, including lung
sounds and medical imaging. Studies show that, in contrast to the use of a single data type, multimodal techniques can increase
diagnostic accuracy. But there are still a number of difficulties. The lack of studies that examine a broad spectrum of lung disorders
is a major problem. Instead of classifying several lung diseases such as asthma, TB, pneumonia, and chronic obstructive pulmonary
disease (COPD), the majority of current research concentrates on the detection or binary classification of COVID-19. This restricts
how these models can be used in the real world. The difficulty of combining several data types in a way that improves model
performance is another significant obstacle. Large, high-quality datasets are also necessary for deep learning models. However, there
are not enough publicly accessible multimodal datasets that cover a range of lung disorders.

Furthermore, doctors find it difficult to believe the predictions made by AI models because they are sometimes complex and
difficult to understand. The adoption of these techniques in hospitals with limited resources is further hampered by their high
computing costs. It is essential to expand the focus of future studies to include lung conditions other than COVID-19. Improving
techniques to efficiently integrate clinical, audio, and visual information can improve diagnosis. Creating larger and more balanced
databases with a variety of disease categories should be another priority for researchers. Creating models that can operate with
smaller datasets and reduce dependence on enormous amounts of labeled data is another crucial avenue. Enhancing transparency
and explainability will contribute to a rise in medical professionals’ trust. Lastly, to ensure that these complex algorithms can be
applied successfully in actual medical situations, cooperation between AI researchers and healthcare professionals is essential. Deep
learning can significantly improve early diagnosis and treatment for a variety of lung diseases by addressing these issues, ultimately
improving patient outcomes.
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//qazaqstan.tv/news/203518/.

[7] K. Bartziokas, A. Papaporfyriou, G. Hillas, A. Papaioannou, and S. Loukides, ”Global Initiative for Chronic Obstructive Lung
Disease (GOLD) Recommendations: Strengths and Concerns for Future Needs,” Postgraduate Medicine, vol. 135, 2022. DOI:
10.1080/00325481.2022.2135893.

[8] J. P. Allinson, N. Chaturvedi, A. Wong, I. Shah, G. C. Donaldson, J. A. Wedzicha, and R. Hardy, ”Early Childhood Lower
Respiratory Tract Infection and Premature Adult Death from Respiratory Disease in Great Britain: A National Birth Cohort
Study,” Lancet (London, England), vol. 401, no. 10383, pp. 1183–1193, 2023. DOI: 10.1016/S0140-6736(23)00131-9.

[9] T. Wanasinghe, S. Bandara, S. Madusanka, D. Meedeniya, M. Bandara, and I. De la Torre Dı́ez, ”Lung Sound Classification for
Respiratory Disease Identification Using Deep Learning: A Survey,” International Journal of Online and Biomedical Engineering
(iJOE), vol. 20, pp. 1-15, 2024. DOI: 10.3991/ijoe.v20i10.49585.

[10] A. Ijaz, M. Nabeel, U. Masood, T. Mahmood, M. S. Hashmi, I. Posokhova, A. Rizwan, and A. Imran, ”Towards Using Cough
for Respiratory Disease Diagnosis by Leveraging Artificial Intelligence: A Survey,” Informatics in Medicine Unlocked, vol.
29, p. 100832, 2022. DOI: 10.1016/j.imu.2021.100832.

Received: March 10, 2025. Reviewed: March 18, 2025. Accepted: March 20, 2025. © 2025 Zhaniya Medeuova. All rights
reserved.

https://doi.org/10.1109/ICOIACT59844.2023.10455864
https://doi.org/10.1155/2023/3563696
https://doi.org/10.1016/j.eclinm.2023.101936
https://doi.org/10.1016/j.eclinm.2023.101936
https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
https://doi.org/10.1109/TII.2021.3098010
https://qazaqstan.tv/news/203518/
https://qazaqstan.tv/news/203518/
https://doi.org/10.1080/00325481.2022.2135893
https://doi.org/10.1080/00325481.2022.2135893
https://doi.org/10.1016/S0140-6736(23)00131-9
https://doi.org/10.3991/ijoe.v20i10.49585
https://doi.org/10.1016/j.imu.2021.100832


28 Journal of Emerging Technologies and Computing (JETC), Vol. 1 No. 1 (2025)

[11] S. Ahmed and S. Kadhem, ”Using Machine Learning via Deep Learning Algorithms to Diagnose the Lung Disease Based
on Chest Imaging: A Survey,” International Journal of Interactive Mobile Technologies (iJIM), vol. 15, p. 95, 2021. DOI:
10.3991/ijim.v15i16.24191.
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